First pass at fragmenting
This commit is contained in:
241
pass-1/packet.c
241
pass-1/packet.c
@@ -33,24 +33,34 @@ unsigned short compute_checksum(unsigned short *addr, unsigned int count) {
|
||||
|
||||
}
|
||||
|
||||
void compute_ip_checksum(struct iphdr* pkt)
|
||||
void compute_ip_checksum(struct iphdr *pkt)
|
||||
{
|
||||
pkt->check = 0x0000;
|
||||
pkt->check = compute_checksum( (unsigned short*) pkt, pkt->ihl * 4 );
|
||||
}
|
||||
|
||||
|
||||
int wrap_ipv4_packet(struct rlocs* reg, struct recv_pkt* pkt, struct rsp_data* out)
|
||||
int build_wrapped_ipv4_packet(struct rlocs *reg, struct rloc * s_rloc, struct rloc *d_rloc, struct packet *pkt, struct rsp_data *out)
|
||||
{
|
||||
out->count = 3;
|
||||
assert( out->count < MAX_IOVS );
|
||||
struct iphdr *wrap_hdr = (struct iphdr *) out->scratch;
|
||||
uint16_t wrap_hdr_size = sizeof( struct iphdr );
|
||||
|
||||
unsigned char *scratch = &out->scratch[0];
|
||||
ssize_t enc_size;
|
||||
size_t orig_data_size = ntohs( pkt->hdr.ip.tot_len );
|
||||
size_t bytes_to_encrypt = orig_data_size > 512 ? 512 : orig_data_size;
|
||||
|
||||
// iovec 0: wrapping header
|
||||
struct iphdr* wrap_hdr = (struct iphdr*) scratch;
|
||||
unsigned int wrap_hdr_size = sizeof( struct iphdr );
|
||||
scratch += wrap_hdr_size;
|
||||
debug( "Wrapping an IPv4 packet" );
|
||||
debug( "wrap_hdr_size: %u, orig_data_size: %zu, bytes_to_encrypt: %zu", wrap_hdr_size, orig_data_size, bytes_to_encrypt );
|
||||
|
||||
// Areas in scratch we'll be using later
|
||||
// We use two bytes to store the size of the encrypted blob
|
||||
uint16_t *pkt_enc_size = (uint16_t *) (out->scratch + wrap_hdr_size );
|
||||
unsigned char * pkt_enc_data = out->scratch + wrap_hdr_size + 2;
|
||||
|
||||
// Keep track of the total size of the data in out as we go
|
||||
uint16_t out_len = 0;
|
||||
|
||||
out->count = 0;
|
||||
|
||||
memset( wrap_hdr, 0, wrap_hdr_size );
|
||||
|
||||
@@ -58,96 +68,171 @@ int wrap_ipv4_packet(struct rlocs* reg, struct recv_pkt* pkt, struct rsp_data* o
|
||||
wrap_hdr->ihl = wrap_hdr_size / 4;
|
||||
wrap_hdr->ttl = IPDEFTTL;
|
||||
wrap_hdr->protocol = IPPROTO_HIDE_EID;
|
||||
wrap_hdr->frag_off = htons( 0x4000 ); // DF bit set
|
||||
wrap_hdr->frag_off = htons( IP_DF ); // DF bit set
|
||||
wrap_hdr->saddr = s_rloc->addr.ip4.s_addr;
|
||||
wrap_hdr->daddr = d_rloc->addr.ip4.s_addr;
|
||||
// FIXME: Do we need to set an ID ?
|
||||
|
||||
// iovec 0: encapsulating IP header.
|
||||
out->iovs[0].iov_base = wrap_hdr;
|
||||
out->iovs[0].iov_len = wrap_hdr_size;
|
||||
out_len += wrap_hdr_size;
|
||||
out->count++;
|
||||
|
||||
// TODO: id, still needs filling now.
|
||||
|
||||
// We need to know source and destination rlocs to construct the packet
|
||||
struct rloc* s_rloc;
|
||||
struct rloc* d_rloc;
|
||||
struct in_addr tmp;
|
||||
|
||||
tmp.s_addr = pkt->hdr.ip.saddr;
|
||||
if ( ( s_rloc = rloc_find_for_ipv4( reg, &tmp ) ) == NULL ) {
|
||||
warn( "Couldn't find source rloc, dropping packet" );
|
||||
// TODO: fallback behaviour here?
|
||||
return 0;
|
||||
}
|
||||
|
||||
tmp.s_addr = pkt->hdr.ip.daddr;
|
||||
if ( ( d_rloc = rloc_find_for_ipv4( reg, &tmp ) ) == NULL ) {
|
||||
warn( "Couldn't find destination rloc, dropping packet" );
|
||||
// TODO: fallback behaviour here?
|
||||
return 0;
|
||||
}
|
||||
|
||||
wrap_hdr->saddr = s_rloc->addr.ip4.s_addr;
|
||||
wrap_hdr->daddr = d_rloc->addr.ip4.s_addr;
|
||||
|
||||
// iovec 1: encrypted part.
|
||||
// FIXME: Need to inspect the protocol field and gobble up the TCP/UDP/etc
|
||||
// header as well, for decent anonymity. TCP/UDP ports are an obvious way
|
||||
// to perform a correlation attack.
|
||||
// RSA pubkey encryption with 4096-bit keys gobbles up at least 512 bytes
|
||||
// of space, so we make sure to use it.
|
||||
ssize_t enc_size;
|
||||
size_t orig_data_size = ntohs( pkt->hdr.ip.tot_len );
|
||||
size_t bytes_to_encrypt;
|
||||
|
||||
if ( orig_data_size > 512 ) {
|
||||
bytes_to_encrypt = 512; // No point wasting bytes on padding
|
||||
} else {
|
||||
bytes_to_encrypt = orig_data_size;
|
||||
}
|
||||
|
||||
off_t enc_max_len = IP_MAXPACKET - wrap_hdr_size - orig_data_size - bytes_to_encrypt;
|
||||
|
||||
// We use two bytes to store the size of the encrypted blob
|
||||
unsigned short *pkt_enc_size = (unsigned short *) scratch;
|
||||
scratch += 2;
|
||||
|
||||
// Encrypt the first 512 or so bytes of the data. FIXME: introspect and
|
||||
// calculate exactly how many bytes for TCP, UDP, etc. to do as little work
|
||||
// as we can get away with, here. fragments > 0 don't need encrypting at all
|
||||
enc_size = rlocs_encrypt(
|
||||
reg, s_rloc, d_rloc,
|
||||
(unsigned char *)&pkt->hdr, bytes_to_encrypt, scratch, enc_max_len - 2
|
||||
(unsigned char *)&pkt->hdr, bytes_to_encrypt,
|
||||
pkt_enc_data, IP_MAXPACKET - wrap_hdr_size - 2
|
||||
);
|
||||
|
||||
if ( enc_size < 0 ) {
|
||||
warn( "failed to encrypt, dropping packet" );
|
||||
debug( "Failed to encrypt, dropping packet" );
|
||||
return 0;
|
||||
}
|
||||
debug( "enc_size: %li", enc_size );
|
||||
|
||||
*pkt_enc_size = htons( enc_size );
|
||||
enc_size += 2;
|
||||
scratch = (unsigned char*) pkt_enc_size;
|
||||
|
||||
warn( "Encrypted size: 2 + %zu", enc_size - 2);
|
||||
// iovec 1: encrypted portion of encpasulated packet
|
||||
out->iovs[1].iov_base = pkt_enc_size;
|
||||
out->iovs[1].iov_len = enc_size + 2;
|
||||
out_len += enc_size + 2;
|
||||
out->count++;
|
||||
|
||||
out->iovs[1].iov_base = scratch;
|
||||
out->iovs[1].iov_len = enc_size;
|
||||
scratch += enc_size;
|
||||
debug( "iovs[0]: %p, %zu", out->iovs[0].iov_base, out->iovs[0].iov_len );
|
||||
debug( "iovs[1]: %p, %zu", out->iovs[1].iov_base, out->iovs[1].iov_len );
|
||||
|
||||
// iovec 2: unencrypted remains
|
||||
if ( bytes_to_encrypt == orig_data_size ) {
|
||||
out->count = 2;
|
||||
out->iovs[2].iov_base = NULL;
|
||||
out->iovs[2].iov_len = 0;
|
||||
} else {
|
||||
out->iovs[2].iov_base = (char *) pkt + bytes_to_encrypt;
|
||||
out->iovs[2].iov_len = ntohs( pkt->hdr.ip.tot_len ) - bytes_to_encrypt;
|
||||
// iovec 2: unencrypted remains of encapsulated packet, if present
|
||||
if ( bytes_to_encrypt < orig_data_size ) {
|
||||
out->iovs[2].iov_base = ((char *) pkt) + bytes_to_encrypt;
|
||||
out->iovs[2].iov_len = orig_data_size - bytes_to_encrypt;
|
||||
out_len += orig_data_size - bytes_to_encrypt;
|
||||
out->count++;
|
||||
debug( "iovs[2]: %p, %zu", out->iovs[2].iov_base, out->iovs[2].iov_len );
|
||||
}
|
||||
|
||||
wrap_hdr->tot_len = htons( wrap_hdr_size + enc_size + out->iovs[2].iov_len );
|
||||
|
||||
wrap_hdr->tot_len = htons( out_len );
|
||||
compute_ip_checksum( wrap_hdr );
|
||||
|
||||
info( "Finished wrapping IPv4 packet" );
|
||||
|
||||
debug( "Finished wrapping IPv4 packet" );
|
||||
return 1;
|
||||
}
|
||||
|
||||
int wrap_ipv6_packet(struct rlocs *reg, struct recv_pkt* pkt, struct rsp_data* out)
|
||||
void build_icmp_too_big( uint16_t max_mtu, struct in_addr *rloc_src, struct packet *pkt, struct rsp_data *out )
|
||||
{
|
||||
struct iphdr *ip = (struct iphdr*) out->scratch;
|
||||
struct icmphdr *icmp = (struct icmphdr *) ( out->scratch + sizeof( struct iphdr ) );
|
||||
uint16_t icmp_size = sizeof( struct icmphdr ) + ( pkt->hdr.ip.ihl * 4 ) + 8;
|
||||
|
||||
debug( "Building ICMP Too Big packet" );
|
||||
|
||||
memset( out->scratch, 0, sizeof( struct iphdr ) + sizeof( struct icmphdr ) );
|
||||
|
||||
ip->version = 4;
|
||||
ip->ihl = sizeof( struct iphdr ) / 4;
|
||||
ip->ttl = IPDEFTTL;
|
||||
ip->protocol = IPPROTO_ICMP;
|
||||
ip->saddr = rloc_src->s_addr;
|
||||
ip->daddr = pkt->hdr.ip.saddr;
|
||||
|
||||
icmp->type = ICMP_DEST_UNREACH;
|
||||
icmp->code = ICMP_FRAG_NEEDED;
|
||||
icmp->un.frag.mtu = htons( max_mtu );
|
||||
|
||||
out->iovs[0].iov_base = out->scratch;
|
||||
out->iovs[0].iov_len = sizeof( struct iphdr ) + icmp_size;
|
||||
|
||||
memcpy( ((char *)icmp) + sizeof( struct icmphdr ), pkt, icmp_size - sizeof( struct icmphdr ) );
|
||||
|
||||
//out->iovs[1].iov_base = pkt;
|
||||
//out->iovs[1].iov_len = ( pkt->hdr.ip.ihl * 4 ) + 8;
|
||||
|
||||
ip->tot_len = htons( out->iovs[0].iov_len );
|
||||
|
||||
icmp->checksum = compute_checksum( (unsigned short *)icmp, icmp_size );
|
||||
compute_ip_checksum( ip );
|
||||
out->count = 1;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
int wrap_ipv4_packet( struct rlocs *reg, struct packet *pkt, struct rsp_data *frag1, struct rsp_data *frag2 )
|
||||
{
|
||||
struct rloc *s_rloc, *d_rloc;
|
||||
|
||||
if ( ( s_rloc = rloc_find_for_ipv4( reg, (struct in_addr *)&pkt->hdr.ip.saddr ) ) == NULL ) {
|
||||
debug( "Couldn't find source RLOC for (TODO), dropping packet" );
|
||||
return 0;
|
||||
}
|
||||
|
||||
if ( ( d_rloc = rloc_find_for_ipv4( reg, (struct in_addr *)&pkt->hdr.ip.daddr ) ) == NULL ) {
|
||||
debug( "Couldn't find destination RLOC for (TODO), dropping packet" );
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint16_t max_size = rlocs_get_path_mtu( reg, s_rloc, d_rloc );
|
||||
uint16_t pkt_tot_len = ntohs( pkt->hdr.ip.tot_len );
|
||||
uint16_t pkt_hdr_len = pkt->hdr.ip.ihl * 4;
|
||||
|
||||
int num_packets = 1;
|
||||
|
||||
// fragmentation is needed.
|
||||
if ( pkt_tot_len > max_size - WRAP_OVERHEAD ) {
|
||||
debug( "Packet needs fragmenting" );
|
||||
// DF bit set, so return ICMP Too Big
|
||||
if ( ntohs( pkt->hdr.ip.frag_off ) & IP_DF ) {
|
||||
build_icmp_too_big( max_size, &s_rloc->addr.ip4, pkt, frag1 );
|
||||
return 1;
|
||||
}
|
||||
|
||||
num_packets = 2;
|
||||
|
||||
// good enough, it's getting encrypted and only needs to be unique for
|
||||
// a short period of time
|
||||
uint16_t frag_id = (uint16_t) rand();
|
||||
|
||||
// Must be an 8-byte offset
|
||||
uint16_t frag_off = ( pkt_tot_len - pkt_hdr_len ) / 2;
|
||||
frag_off += frag_off%8;
|
||||
uint16_t frag2_size = pkt_tot_len - pkt_hdr_len - frag_off;
|
||||
|
||||
if ( pkt_hdr_len > sizeof( struct iphdr ) ) {
|
||||
warn( "FIXME: options specified with IP header are not handled correctly during fragmentation yet" );
|
||||
}
|
||||
|
||||
// wrap_ipv4_packet only touches scratch upto IP_MAXPACKET. We allocate
|
||||
// double that.
|
||||
struct packet *pkt2 = (struct packet *) frag2->scratch + IP_MAXPACKET;
|
||||
|
||||
pkt->hdr.ip.tot_len = htons( pkt_hdr_len + frag_off );
|
||||
pkt->hdr.ip.id = htons( frag_id );
|
||||
pkt->hdr.ip.frag_off = htons( 0 | IP_MF );
|
||||
|
||||
memcpy( pkt2, pkt, pkt_hdr_len );
|
||||
|
||||
pkt2->hdr.ip.tot_len = htons( pkt_tot_len - frag_off );
|
||||
pkt2->hdr.ip.frag_off = htons( frag_off / 8 );
|
||||
memcpy( ((char *)pkt2) + pkt_hdr_len, ((char*)pkt)+pkt_hdr_len, frag2_size );
|
||||
|
||||
if ( !build_wrapped_ipv4_packet( reg, s_rloc, d_rloc, pkt2, frag2 ) ) {
|
||||
debug( "Couldn't wrap packet 2 of 2 ");
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
if ( !build_wrapped_ipv4_packet( reg, s_rloc, d_rloc, pkt, frag1 ) ) {
|
||||
debug( "Couldn't wrap packet 1 of %i", num_packets );
|
||||
return 0;
|
||||
}
|
||||
|
||||
return num_packets;
|
||||
}
|
||||
|
||||
int wrap_ipv6_packet(struct rlocs *reg, struct packet *pkt, struct rsp_data *out)
|
||||
{
|
||||
warn( "STUB: wrap_ipv6_packet" );
|
||||
return 0;
|
||||
@@ -155,7 +240,7 @@ int wrap_ipv6_packet(struct rlocs *reg, struct recv_pkt* pkt, struct rsp_data* o
|
||||
|
||||
|
||||
|
||||
int unwrap_ipv4_packet(struct rlocs* reg, struct recv_pkt* pkt, struct rsp_data* out)
|
||||
int unwrap_ipv4_packet(struct rlocs* reg, struct packet *pkt, struct rsp_data *out)
|
||||
{
|
||||
out->count = 2;
|
||||
assert( out->count < MAX_IOVS );
|
||||
@@ -222,7 +307,7 @@ int unwrap_ipv4_packet(struct rlocs* reg, struct recv_pkt* pkt, struct rsp_data*
|
||||
return 1;
|
||||
}
|
||||
|
||||
int unwrap_ipv6_packet(struct rlocs *reg, struct recv_pkt* pkt, struct rsp_data* out)
|
||||
int unwrap_ipv6_packet(struct rlocs *reg, struct packet *pkt, struct rsp_data *out)
|
||||
{
|
||||
warn( "STUB: unwrap_ipv6_packet" );
|
||||
|
||||
|
Reference in New Issue
Block a user