Use dep to vendor things

This commit is contained in:
2018-03-18 04:23:13 +00:00
parent d572a19352
commit 1ba64f2aa8
123 changed files with 34229 additions and 0 deletions

14
vendor/github.com/go-gl/mathgl/AUTHORS generated vendored Normal file
View File

@@ -0,0 +1,14 @@
# This is the official list of go-gl/mathgl authors for copyright purposes.
# This file is distinct from the CONTRIBUTORS files.
# See the latter for an explanation.
# Names should be added to this file as
# Name or Organization <email address>
# The email address is not required for organizations.
# Please keep the list sorted.
Alex Vasi <eee@someuser.com>
Dmitri Shuralyov <shurcooL@gmail.com>
GlenKelley <???>
Zoe Juozapaitis <jragonmiris@gmail.com>

21
vendor/github.com/go-gl/mathgl/CONTRIBUTORS generated vendored Normal file
View File

@@ -0,0 +1,21 @@
# This is the official list of people who can contribute
# (and typically have contributed) code to the mathgl
# repository.
#
# The AUTHORS file lists the copyright holders; this file
# lists people. For example, Google employees would be listed here
# but not in AUTHORS, because Google would hold the copyright.
#
# When adding J Random Contributor's name to this file,
# either J's name or J's organization's name should be
# added to the AUTHORS file.
#
# Names should be added to this file like so:
# Name <email address>
#
# Please keep the list sorted.
Alex Vasi <eee@someuser.com>
Dmitri Shuralyov <shurcooL@gmail.com>
GlenKelley <???>
Zoe Juozapaitis <jragonmiris@gmail.com>

23
vendor/github.com/go-gl/mathgl/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,23 @@
Copyright ©2013 The go-gl Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the gonum project nor the names of its authors and
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

276
vendor/github.com/go-gl/mathgl/mgl32/codegen.go generated vendored Normal file
View File

@@ -0,0 +1,276 @@
// Copyright 2014 The go-gl/mathgl Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
// codegen generates go code from templates. Intended to be
// used with go generate; Also makes mgl64 from mgl32.
// See the invocation in mgl32/util.go for details.
// To use it, just run "go generate github.com/go-gl/mathgl/mgl32"
// (or "go generate" in mgl32 directory).
package main
import (
"bytes"
"flag"
"fmt"
"io/ioutil"
"os"
"os/exec"
"path/filepath"
"strings"
"text/template"
)
type Context struct {
Comment string
TemplateName string
}
type MatrixIter struct {
M int // row
N int // column
index int
}
var mgl64RewriteRules = []string{
"mgl32 -> mgl64",
"float32 -> float64",
"f32 -> f64",
"a.Float32 -> a.Float64",
"math.MaxFloat32 -> math.MaxFloat64",
"math.SmallestNonzeroFloat32 -> math.SmallestNonzeroFloat64",
}
func main() {
flag.Usage = func() {
fmt.Println("Usage: codegen -template file.tmpl -output file.go")
fmt.Println("Usage: codegen -mgl64 [-dir ../mgl64]")
flag.PrintDefaults()
}
tmplPath := flag.String("template", "file.tmpl", "template path")
oPath := flag.String("output", "file.go", "output path")
mgl64 := flag.Bool("mgl64", false, "make mgl64")
mgl64Path := flag.String("dir", "../mgl64", "path to mgl64 location")
flag.Parse()
if flag.NArg() > 0 || flag.NFlag() == 0 {
flag.Usage()
os.Exit(2)
}
if *mgl64 {
genMgl64(*mgl64Path)
return
}
tmpl := template.New("").Delims("<<", ">>").Funcs(template.FuncMap{
"typename": typenameHelper,
"elementname": elementNameHelper,
"iter": iterHelper,
"matiter": matrixIterHelper,
"enum": enumHelper,
"sep": separatorHelper,
"repeat": repeatHelper,
"add": addHelper,
"mul": mulHelper,
})
tmpl = template.Must(tmpl.ParseFiles(*tmplPath))
tmplName := filepath.Base(*tmplPath)
oFile, err := os.Create(*oPath)
if err != nil {
panic(err)
}
context := Context{
Comment: "This file is generated by codegen.go; DO NOT EDIT",
TemplateName: tmplName,
}
if err = tmpl.ExecuteTemplate(oFile, tmplName, context); err != nil {
panic(err)
}
oFile.Close()
if err = rungofmt(*oPath, false, nil); err != nil {
panic(err)
}
}
func genMgl64(destPath string) {
HandleFile := func(source string, info os.FileInfo, err error) error {
if err != nil {
return err
}
dest := filepath.Join(destPath, source)
if info.IsDir() {
return os.MkdirAll(dest, info.Mode())
}
if !strings.HasSuffix(source, ".go") || info.Name() == "codegen.go" {
return nil
}
if !info.Mode().IsRegular() {
fmt.Println("Ignored, not a regular file:", source)
return nil
}
in, err := ioutil.ReadFile(source)
if err != nil {
return err
}
out, err := os.OpenFile(dest, os.O_RDWR|os.O_CREATE|os.O_TRUNC,
info.Mode())
if err != nil {
return err
}
defer out.Close()
comment := fmt.Sprintf(
"// This file is generated from mgl32/%s; DO NOT EDIT\n\n",
source)
if _, err = out.WriteString(comment); err != nil {
return err
}
r := strings.NewReplacer("//go:generate ", "//#go:generate ") // We don't want go generate directives in mgl64 package.
if _, err = r.WriteString(out, string(in)); err != nil {
return err
}
return rungofmt(dest, true, mgl64RewriteRules)
}
if err := filepath.Walk(".", HandleFile); err != nil {
panic(err)
}
}
func rungofmt(path string, fiximports bool, rewriteRules []string) error {
args := []string{"-w", path}
output, err := exec.Command("gofmt", args...).CombinedOutput()
for i := 0; err == nil && i < len(rewriteRules); i++ {
args = []string{"-w", "-r", rewriteRules[i], path}
output, err = exec.Command("gofmt", args...).CombinedOutput()
}
if fiximports && err == nil {
args = []string{"-w", path}
output, err = exec.Command("goimports", args...).CombinedOutput()
}
if err != nil {
fmt.Println("Error executing gofmt", strings.Join(args, " "))
os.Stdout.Write(output)
}
return err
}
func typenameHelper(m, n int) string {
if m == 1 {
return fmt.Sprintf("Vec%d", n)
}
if n == 1 {
return fmt.Sprintf("Vec%d", m)
}
if m == n {
return fmt.Sprintf("Mat%d", m)
}
return fmt.Sprintf("Mat%dx%d", m, n)
}
func elementNameHelper(m int) string {
switch m {
case 0:
return "X"
case 1:
return "Y"
case 2:
return "Z"
case 3:
return "W"
default:
panic("Can't generate element name")
}
}
func iterHelper(start, end int) []int {
iter := make([]int, end-start)
for i := start; i < end; i++ {
iter[i] = i
}
return iter
}
func matrixIterHelper(rows, cols int) []MatrixIter {
res := make([]MatrixIter, 0, rows*cols)
for n := 0; n < cols; n++ {
for m := 0; m < rows; m++ {
res = append(res, MatrixIter{
M: m,
N: n,
index: n*rows + m,
})
}
}
return res
}
// Template function that returns slice from its arguments. Indended to be used
// in range loops.
func enumHelper(args ...int) []int {
return args
}
// Template function to insert commas and '+' in range loops.
func separatorHelper(sep string, iterCond int) string {
if iterCond > 0 {
return sep
}
return ""
}
// Template function to repeat string 'count' times. Inserting 'sep' between
// repetitions. Also changes all occurrences of '%d' to repetition number.
// For example, repeatHelper(3, "col%d", ",") will output "col0, col1, col2"
func repeatHelper(count int, text string, sep string) string {
var res bytes.Buffer
for i := 0; i < count; i++ {
if i > 0 {
res.WriteString(sep)
}
res.WriteString(strings.Replace(text, "%d", fmt.Sprintf("%d", i), -1))
}
return res.String()
}
func addHelper(args ...int) int {
res := 0
for _, a := range args {
res += a
}
return res
}
func mulHelper(args ...int) int {
res := 1
for _, a := range args {
res *= a
}
return res
}
func (i MatrixIter) String() string {
return fmt.Sprintf("%d", i.index)
}

94
vendor/github.com/go-gl/mathgl/mgl32/conv.go generated vendored Normal file
View File

@@ -0,0 +1,94 @@
// Copyright 2014 The go-gl Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mgl32
import (
"math"
)
// Converts 3-dimensional cartesian coordinates (x,y,z) to spherical
// coordinates with radius r, inclination theta, and azimuth phi.
//
// All angles are in radians.
func CartesianToSpherical(coord Vec3) (r, theta, phi float32) {
r = coord.Len()
theta = float32(math.Acos(float64(coord[2] / r)))
phi = float32(math.Atan2(float64(coord[1]), float64(coord[0])))
return
}
// Converts 3-dimensional cartesian coordinates (x,y,z) to cylindrical
// coordinates with radial distance r, azimuth phi, and height z.
//
// All angles are in radians.
func CartesianToCylindical(coord Vec3) (rho, phi, z float32) {
rho = float32(math.Hypot(float64(coord[0]), float64(coord[1])))
phi = float32(math.Atan2(float64(coord[1]), float64(coord[0])))
z = coord[2]
return
}
// Converts spherical coordinates with radius r, inclination theta,
// and azimuth phi to cartesian coordinates (x,y,z).
//
// Angles are in radians.
func SphericalToCartesian(r, theta, phi float32) Vec3 {
st, ct := math.Sincos(float64(theta))
sp, cp := math.Sincos(float64(phi))
return Vec3{r * float32(st*cp), r * float32(st*sp), r * float32(ct)}
}
// Converts spherical coordinates with radius r, inclination theta,
// and azimuth phi to cylindrical coordinates with radial distance r,
// azimuth phi, and height z.
//
// Angles are in radians
func SphericalToCylindrical(r, theta, phi float32) (rho, phi2, z float32) {
s, c := math.Sincos(float64(theta))
rho = r * float32(s)
z = r * float32(c)
phi2 = phi
return
}
// Converts cylindrical coordinates with radial distance r,
// azimuth phi, and height z to spherical coordinates with radius r,
// inclination theta, and azimuth phi.
//
// Angles are in radians
func CylindircalToSpherical(rho, phi, z float32) (r, theta, phi2 float32) {
r = float32(math.Hypot(float64(rho), float64(z)))
phi2 = phi
theta = float32(math.Atan2(float64(rho), float64(z)))
return
}
// Converts cylindrical coordinates with radial distance r,
// azimuth phi, and height z to cartesian coordinates (x,y,z)
//
// Angles are in radians.
func CylindricalToCartesian(rho, phi, z float32) Vec3 {
s, c := math.Sincos(float64(phi))
return Vec3{rho * float32(c), rho * float32(s), z}
}
// Converts degrees to radians
func DegToRad(angle float32) float32 {
return angle * float32(math.Pi) / 180
}
// Converts radians to degrees
func RadToDeg(angle float32) float32 {
return angle * 180 / float32(math.Pi)
}

22
vendor/github.com/go-gl/mathgl/mgl32/doc.go generated vendored Normal file
View File

@@ -0,0 +1,22 @@
// Copyright 2014 The go-gl Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package mgl[32|64] (an abbreviation of mathgl since the packages were split between 32 and 64-bit versions)
is a pure Go math package specialized for 3D math, with inspiration from GLM. It provides statically-sized vectors and matrices with
compile-time generated calculations for most basic math operations. It also provides several basic graphics utilities such as bezier curves and surfaces,
generation of basic primitives like circles, easy creation of common matrices such as perspective or rotation, and common operations like converting
to/from screen/OpenGL coordinates or Projecting/Unprojecting from an MVP matrix. Quaternions are also supported.
The basic vectors and matrices are written with code generation, so looking directly at the source will probably be a bit confusing. I recommend looking at the Godoc
instead, as all basic functions are documented.
This package is written in Column Major Order to make it easier with OpenGL. This means for uniform blocks you can use the default ordering, and when you call
pass-in functions you can leave the "transpose" argument as false.
The package now contains variable sized vectors and matrices. Using these is discouraged. They exist for corner cases where you need "small" matrices that are still
bigger than 4x4. An example may be a Jacobean used for inverse kinematics. Things like computer vision or general linear algebra are best left to packages
more directly suited for that task -- OpenCV, BLAS, LAPACK, numpy, gonum (if you want to stay in Go), and so on.
*/
package mgl32

494
vendor/github.com/go-gl/mathgl/mgl32/matmn.go generated vendored Normal file
View File

@@ -0,0 +1,494 @@
// Copyright 2014 The go-gl Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mgl32
import (
"math"
)
// An arbitrary mxn matrix backed by a slice of floats.
//
// This is emphatically not recommended for hardcore n-dimensional
// linear algebra. For that purpose I recommend github.com/gonum/matrix or
// well-tested C libraries such as BLAS or LAPACK.
//
// This is meant to complement future algorithms that may require matrices larger than
// 4x4, but still relatively small (e.g. Jacobeans for inverse kinematics).
//
// It makes use of the same memory sync.Pool set that VecN does, with the same sizing rules.
//
// MatMN will always check if the receiver is nil on any method. Meaning MathMN(nil).Add(dst,m2)
// should always work. Except for the Reshape function, the semantics of this is to "propogate" nils
// forward, so if an invalid operation occurs in a long chain of matrix operations, the overall result will be nil.
type MatMxN struct {
m, n int
dat []float32
}
// Creates a matrix backed by a new slice of size m*n
func NewMatrix(m, n int) (mat *MatMxN) {
if shouldPool {
return &MatMxN{m: m, n: n, dat: grabFromPool(m * n)}
} else {
return &MatMxN{m: m, n: n, dat: make([]float32, m*n)}
}
}
// Returns a matrix with data specified by the data in src
//
// For instance, to create a 3x3 MatMN from a Mat3
//
// m1 := mgl32.Rotate3DX(3.14159)
// mat := mgl32.NewBackedMatrix(m1[:],3,3)
//
// will create an MN matrix matching the data in the original
// rotation matrix. This matrix is NOT backed by the initial slice;
// it's a copy of the data
//
// If m*n > cap(src), this function will panic.
func NewMatrixFromData(src []float32, m, n int) *MatMxN {
var internal []float32
if shouldPool {
internal = grabFromPool(m * n)
} else {
internal = make([]float32, m*n)
}
copy(internal, src[:m*n])
return &MatMxN{m: m, n: n, dat: internal}
}
// Copies src into dst. This Reshapes dst
// to the same size as src.
//
// If dst or src is nil, this is a no-op
func CopyMatMN(dst, src *MatMxN) {
if dst == nil || src == nil {
return
}
dst.Reshape(src.m, src.n)
copy(dst.dat, src.dat)
}
// Stores the NxN identity matrix in dst, reallocating as necessary.
func IdentN(dst *MatMxN, n int) *MatMxN {
dst = dst.Reshape(n, n)
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
if i == j {
dst.Set(i, j, 1)
} else {
dst.Set(i, j, 0)
}
}
}
return dst
}
// Creates an NxN diagonal matrix seeded by the diagonal vector
// diag. Meaning: for all entries, where i==j, dst.At(i,j) = diag[i]. Otherwise
// dst.At(i,j) = 0
//
// This reshapes dst to the correct size, returning/grabbing from the memory pool as necessary.
func DiagN(dst *MatMxN, diag *VecN) *MatMxN {
dst = dst.Reshape(len(diag.vec), len(diag.vec))
n := len(diag.vec)
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
if i == j {
dst.Set(i, j, diag.vec[i])
} else {
dst.Set(i, j, 0)
}
}
}
return dst
}
// Reshapes the matrix to m by n and zeroes out all
// elements.
func (mat *MatMxN) Zero(m, n int) {
if mat == nil {
return
}
mat.Reshape(m, n)
for i := range mat.dat {
mat.dat[i] = 0
}
}
// Returns the underlying matrix slice to the memory pool
func (mat *MatMxN) destroy() {
if mat == nil {
return
}
if shouldPool && mat.dat != nil {
returnToPool(mat.dat)
}
mat.m, mat.n = 0, 0
mat.dat = nil
}
// Reshapes the matrix to the desired dimensions.
// If the overall size of the new matrix (m*n) is bigger
// than the current size, the underlying slice will
// be grown, sending the current slice to the memory pool
// and grabbing a bigger one if necessary
//
// If the caller is a nil pointer, the return value will be a new
// matrix, as if NewMatrix(m,n) had been called. Otherwise it's
// simply the caller.
func (mat *MatMxN) Reshape(m, n int) *MatMxN {
if mat == nil {
return NewMatrix(m, n)
}
if m*n <= cap(mat.dat) {
if mat.dat != nil {
mat.dat = mat.dat[:m*n]
} else {
mat.dat = []float32{}
}
mat.m, mat.n = m, n
return mat
}
if shouldPool && mat.dat != nil {
returnToPool(mat.dat)
}
(*mat) = (*NewMatrix(m, n))
return mat
}
// Infers an MxN matrix from a constant matrix from this package. For instance,
// a Mat2x3 inferred with this function will work just like NewMatrixFromData(m[:],2,3)
// where m is the Mat2x3. This uses a type switch.
//
// I personally recommend using NewMatrixFromData, because it avoids a potentially costly type switch.
// However, this is also more robust and less error prone if you change the size of your matrix somewhere.
//
// If the value passed in is not recognized, it returns an InferMatrixError.
func (mat *MatMxN) InferMatrix(m interface{}) (*MatMxN, error) {
switch raw := m.(type) {
case Mat2:
return NewMatrixFromData(raw[:], 2, 2), nil
case Mat2x3:
return NewMatrixFromData(raw[:], 2, 3), nil
case Mat2x4:
return NewMatrixFromData(raw[:], 2, 4), nil
case Mat3:
return NewMatrixFromData(raw[:], 3, 3), nil
case Mat3x2:
return NewMatrixFromData(raw[:], 3, 2), nil
case Mat3x4:
return NewMatrixFromData(raw[:], 3, 4), nil
case Mat4:
return NewMatrixFromData(raw[:], 4, 4), nil
case Mat4x2:
return NewMatrixFromData(raw[:], 4, 2), nil
case Mat4x3:
return NewMatrixFromData(raw[:], 4, 3), nil
default:
return nil, InferMatrixError{}
}
}
// Returns the trace of a square matrix (sum of all diagonal elements). If the matrix
// is nil, or not square, the result will be NaN.
func (mat *MatMxN) Trace() float32 {
if mat == nil || mat.m != mat.n {
return float32(math.NaN())
}
var out float32
for i := 0; i < mat.m; i++ {
out += mat.At(i, i)
}
return out
}
// Takes the transpose of mat and puts it in dst.
//
// If dst is not of the correct dimensions, it will be Reshaped,
// if dst and mat are the same, a temporary matrix of the correct size will
// be allocated; these resources will be released via the memory pool.
//
// This should be improved in the future.
func (mat *MatMxN) Transpose(dst *MatMxN) (t *MatMxN) {
if mat == nil {
return nil
}
if dst == mat {
dst = NewMatrix(mat.n, mat.m)
// Copy data to correct matrix,
// delete temporary buffer,
// and set the return value to the
// correct one
defer func() {
copy(mat.dat, dst.dat)
mat.m, mat.n = mat.n, mat.m
dst.destroy()
t = mat
}()
return mat
} else {
dst = dst.Reshape(mat.n, mat.m)
}
for r := 0; r < mat.m; r++ {
for c := 0; c < mat.n; c++ {
dst.dat[r*dst.m+c] = mat.dat[c*mat.m+r]
}
}
return dst
}
// Returns the raw slice backing this matrix
func (mat *MatMxN) Raw() []float32 {
if mat == nil {
return nil
}
return mat.dat
}
// Returns the number of rows in this matrix
func (mat *MatMxN) NumRows() int {
return mat.m
}
// Returns the number of columns in this matrix
func (mat *MatMxN) NumCols() int {
return mat.n
}
// Returns the number of rows and columns in this matrix
// as a single operation
func (mat *MatMxN) NumRowCols() (rows, cols int) {
return mat.m, mat.n
}
// Returns the element at the given row and column.
// This is garbage in/garbage out and does no bounds
// checking. If the computation happens to lead to an invalid
// element, it will be returned; or it may panic.
func (mat *MatMxN) At(row, col int) float32 {
return mat.dat[col*mat.m+row]
}
// Sets the element at the given row and column.
// This is garbage in/garbage out and does no bounds
// checking. If the computation happens to lead to an invalid
// element, it will be set; or it may panic.
func (mat *MatMxN) Set(row, col int, val float32) {
mat.dat[col*mat.m+row] = val
}
func (mat *MatMxN) Add(dst *MatMxN, addend *MatMxN) *MatMxN {
if mat == nil || addend == nil || mat.m != addend.m || mat.n != addend.n {
return nil
}
dst = dst.Reshape(mat.m, mat.n)
// No need to care about rows and columns
// since it's element-wise anyway
for i, el := range mat.dat {
dst.dat[i] = el + addend.dat[i]
}
return dst
}
func (mat *MatMxN) Sub(dst *MatMxN, subtrahend *MatMxN) *MatMxN {
if mat == nil || subtrahend == nil || mat.m != subtrahend.m || mat.n != subtrahend.n {
return nil
}
dst = dst.Reshape(mat.m, mat.n)
// No need to care about rows and columns
// since it's element-wise anyway
for i, el := range mat.dat {
dst.dat[i] = el - subtrahend.dat[i]
}
return dst
}
// Performs matrix multiplication on MxN matrix mat and NxO matrix mul, storing the result in dst.
// This returns dst, or nil if the operation is not able to be performed.
//
// If mat == dst, or mul == dst a temporary matrix will be used.
//
// This uses the naive algorithm (though on smaller matrices,
// this can actually be faster; about len(mat)+len(mul) < ~100)
func (mat *MatMxN) MulMxN(dst *MatMxN, mul *MatMxN) *MatMxN {
if mat == nil || mul == nil || mat.n != mul.m {
return nil
}
if dst == mul {
mul = NewMatrix(mul.m, mul.n)
copy(mul.dat, dst.dat)
// If mat==dst==mul, we need to change
// mat too or we have a bug
if mat == dst {
mat = mul
}
defer mul.destroy()
} else if dst == mat {
mat = NewMatrix(mat.m, mat.n)
copy(mat.dat, dst.dat)
defer mat.destroy()
}
dst = dst.Reshape(mat.m, mul.n)
for r1 := 0; r1 < mat.m; r1++ {
for c2 := 0; c2 < mul.n; c2++ {
dst.dat[c2*mat.m+r1] = 0
for i := 0; i < mat.n; i++ {
dst.dat[c2*mat.m+r1] += mat.dat[i*mat.m+r1] * mul.dat[c2*mul.m+i]
}
}
}
return dst
}
// Performs a scalar multiplication between mat and some constant c,
// storing the result in dst. Mat and dst can be equal. If dst is not the
// correct size, a Reshape will occur.
func (mat *MatMxN) Mul(dst *MatMxN, c float32) *MatMxN {
if mat == nil {
return nil
}
dst = dst.Reshape(mat.m, mat.n)
for i, el := range mat.dat {
dst.dat[i] = el * c
}
return dst
}
// Multiplies the matrix by a vector of size n. If mat or v is
// nil, this returns nil. If the number of columns in mat does not match
// the Size of v, this also returns nil.
//
// Dst will be resized if it's not big enough. If dst == v; a temporary
// vector will be allocated and returned via the realloc callback when complete.
func (mat *MatMxN) MulNx1(dst, v *VecN) *VecN {
if mat == nil || v == nil || mat.n != len(v.vec) {
return nil
}
if dst == v {
v = NewVecN(len(v.vec))
copy(v.vec, dst.vec)
defer v.destroy()
}
dst = dst.Resize(mat.m)
for r := 0; r < mat.m; r++ {
dst.vec[r] = 0
for c := 0; c < mat.n; c++ {
dst.vec[r] += mat.At(r, c) * v.vec[c]
}
}
return dst
}
func (mat *MatMxN) ApproxEqual(m2 *MatMxN) bool {
if mat == m2 {
return true
}
if mat.m != m2.m || mat.n != m2.n {
return false
}
for i, el := range mat.dat {
if !FloatEqual(el, m2.dat[i]) {
return false
}
}
return true
}
func (mat *MatMxN) ApproxEqualThreshold(m2 *MatMxN, epsilon float32) bool {
if mat == m2 {
return true
}
if mat.m != m2.m || mat.n != m2.n {
return false
}
for i, el := range mat.dat {
if !FloatEqualThreshold(el, m2.dat[i], epsilon) {
return false
}
}
return true
}
func (mat *MatMxN) ApproxEqualFunc(m2 *MatMxN, comp func(float32, float32) bool) bool {
if mat == m2 {
return true
}
if mat.m != m2.m || mat.n != m2.n {
return false
}
for i, el := range mat.dat {
if !comp(el, m2.dat[i]) {
return false
}
}
return true
}
type InferMatrixError struct{}
func (me InferMatrixError) Error() string {
return "could not infer matrix. Make sure you're using a constant matrix such as Mat3 from within the same package (meaning: mgl32.MatMxN can't handle a mgl64.Mat2x3)."
}
type RectangularMatrixError struct{}
func (mse RectangularMatrixError) Error() string {
return "the matrix was the wrong shape, needed a square matrix."
}
type NilMatrixError struct{}
func (me NilMatrixError) Error() string {
return "the matrix is nil"
}

2341
vendor/github.com/go-gl/mathgl/mgl32/matrix.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

370
vendor/github.com/go-gl/mathgl/mgl32/matrix.tmpl generated vendored Normal file
View File

@@ -0,0 +1,370 @@
// Copyright 2014 The go-gl/mathgl Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// <<.Comment>>
// Edit <<.TemplateName>> and run "go generate" to make changes.
package mgl32
import (
"bytes"
"fmt"
"golang.org/x/image/math/f32"
"text/tabwriter"
)
type Mat2 [4]float32
type Mat2x3 [6]float32
type Mat2x4 [8]float32
type Mat3x2 [6]float32
type Mat3 f32.Mat3
type Mat3x4 [12]float32
type Mat4x2 [8]float32
type Mat4x3 [12]float32
type Mat4 f32.Mat4
func (m Mat2) Mat3() Mat3 {
col0, col1 := m.Cols()
return Mat3FromCols(
col0.Vec3(0),
col1.Vec3(0),
Vec3{0, 0, 1},
)
}
func (m Mat2) Mat4() Mat4 {
col0, col1 := m.Cols()
return Mat4FromCols(
col0.Vec4(0, 0),
col1.Vec4(0, 0),
Vec4{0, 0, 1, 0},
Vec4{0, 0, 0, 1},
)
}
func (m Mat3) Mat2() Mat2 {
col0, col1, _ := m.Cols()
return Mat2FromCols(
col0.Vec2(),
col1.Vec2(),
)
}
func (m Mat3) Mat4() Mat4 {
col0, col1, col2 := m.Cols()
return Mat4FromCols(
col0.Vec4(0),
col1.Vec4(0),
col2.Vec4(0),
Vec4{0, 0, 0, 1},
)
}
func (m Mat4) Mat2() Mat2 {
col0, col1, _, _ := m.Cols()
return Mat2FromCols(
col0.Vec2(),
col1.Vec2(),
)
}
func (m Mat4) Mat3() Mat3 {
col0, col1, col2, _ := m.Cols()
return Mat3FromCols(
col0.Vec3(),
col1.Vec3(),
col2.Vec3(),
)
}
<</* Common functions for all matrices */>>
<<range $m := enum 2 3 4>><<range $n := enum 2 3 4>>
<<$type := typename $m $n>>
// Sets a Column within the Matrix, so it mutates the calling matrix.
func (m *<<$type>>) SetCol(col int, v <<typename $m 1>>) {
<<range $i := iter 0 $m>><<sep "," $i>>m[col*<<$m>>+<<$i>>]<<end>> = <<repeat $m "v[%d]" ",">>
}
// Sets a Row within the Matrix, so it mutates the calling matrix.
func (m *<<$type>>) SetRow(row int, v <<typename $n 1>>) {
<<range $i := iter 0 $n>><<sep "," $i>>m[row+<<mul $m $i>>]<<end>> = <<repeat $n "v[%d]" ",">>
}
<<if eq $m $n>>
// Diag is a basic operation on a square matrix that simply
// returns main diagonal (meaning all elements such that row==col).
func (m <<$type>>) Diag() <<typename $m 1>> {
return <<typename $m 1>>{<<range $i := iter 0 $m>>m[<<mul $i $m | add $i>>],<<end>>}
}
<<end>>
<<if eq $m $n>>
// Ident<<$m>> returns the <<$m>>x<<$n>> identity matrix.
// The identity matrix is a square matrix with the value 1 on its
// diagonals. The characteristic property of the identity matrix is that
// any matrix multiplied by it is itself. (MI = M; IN = N)
func Ident<<$m>>() <<$type>> {
return <<$type>>{<<range $i := matiter $m $n>><<if eq $i.M $i.N>>1<<else>>0<<end>>,<<end>>}
}
<<end>>
<<if eq $m $n>>
// Diag<<$m>> creates a diagonal matrix from the entries of the input vector.
// That is, for each pointer for row==col, vector[row] is the entry. Otherwise it's 0.
//
// Another way to think about it is that the identity is this function where the every vector element is 1.
func Diag<<$m>>(v <<typename $m 1>>) <<$type>> {
var m <<$type>>
<<range $i := iter 0 $m>><<sep "," $i>>m[<<mul $i $m | add $i>>]<<end>> = <<repeat $m "v[%d]" ",">>
return m
}
<<end>>
// <<$type>>FromRows builds a new matrix from row vectors.
// The resulting matrix will still be in column major order, but this can be
// good for hand-building matrices.
func <<$type>>FromRows(<<range $i := iter 0 $m>><<sep "," $i>>row<<$i>><<end>> <<typename $n 1>>) <<$type>> {
return <<$type>>{<<range $i := matiter $m $n>>row<<$i.M>>[<<$i.N>>],<<end>>}
}
// <<$type>>FromCols builds a new matrix from column vectors.
func <<$type>>FromCols(<<repeat $n "col%d" ",">> <<typename $m 1>>) <<$type>> {
return <<$type>>{<<range $i := matiter $m $n>>col<<$i.N>>[<<$i.M>>], <<end>>}
}
// Add performs an element-wise addition of two matrices, this is
// equivalent to iterating over every element of m1 and adding the corresponding value of m2.
func (m1 <<$type>>) Add(m2 <<$type>>) <<$type>> {
return <<$type>>{<< range $i := matiter $m $n>>m1[<<$i>>] + m2[<<$i>>], <<end>>}
}
// Sub performs an element-wise subtraction of two matrices, this is
// equivalent to iterating over every element of m1 and subtracting the corresponding value of m2.
func (m1 <<$type>>) Sub(m2 <<$type>>) <<$type>> {
return <<$type>>{<< range $i := matiter $m $n>>m1[<<$i>>] - m2[<<$i>>], <<end>>}
}
// Mul performs a scalar multiplcation of the matrix. This is equivalent to iterating
// over every element of the matrix and multiply it by c.
func (m1 <<$type>>) Mul(c float32) <<$type>> {
return <<$type>>{<< range $i := matiter $m $n>>m1[<<$i>>] * c, <<end>>}
}
<<range $o := enum 1 2 3 4>>
// Mul<<$n>><<if ne $n $o>>x<<$o>><<end>> performs a "matrix product" between this matrix
// and another of the given dimension. For any two matrices of dimensionality
// MxN and NxO, the result will be MxO. For instance, Mat4 multiplied using
// Mul4x2 will result in a Mat4x2.
func (m1 <<$type>>) Mul<<$n>><<if ne $n $o>>x<<$o>><<end>>(m2 <<typename $n $o>>) <<typename $m $o>> {
return <<typename $m $o>>{<<range $i := matiter $m $o>>
<<range $k := iter 0 $n>><<sep "+" $k>>m1[<<mul $k $m | add $i.M>>]*m2[<<mul $i.N $n| add $k>>]<<end>>,<<end>>
}
}
<<end>>
// Transpose produces the transpose of this matrix. For any MxN matrix
// the transpose is an NxM matrix with the rows swapped with the columns. For instance
// the transpose of the Mat3x2 is a Mat2x3 like so:
//
// [[a b]] [[a c e]]
// [[c d]] = [[b d f]]
// [[e f]]
func (m1 <<$type>>) Transpose() <<typename $n $m>> {
return <<typename $n $m>>{<<range $i := matiter $n $m>>m1[<<mul $m $i.M | add $i.N>>], <<end>>}
}
<<if eq $m $n>>
// The determinant of a matrix is a measure of a square matrix's
// singularity and invertability, among other things. In this library, the
// determinant is hard coded based on pre-computed cofactor expansion, and uses
// no loops. Of course, the addition and multiplication must still be done.
func (m <<$type>>) Det() float32 {
<<if eq $m 2 ->>
return m[0]*m[3] - m[1]*m[2]
<<else if eq $m 3 ->>
return m[0]*m[4]*m[8] + m[3]*m[7]*m[2] + m[6]*m[1]*m[5] - m[6]*m[4]*m[2] - m[3]*m[1]*m[8] - m[0]*m[7]*m[5]
<<else if eq $m 4 ->>
return m[0]*m[5]*m[10]*m[15] - m[0]*m[5]*m[11]*m[14] - m[0]*m[6]*m[9]*m[15] + m[0]*m[6]*m[11]*m[13] + m[0]*m[7]*m[9]*m[14] - m[0]*m[7]*m[10]*m[13] - m[1]*m[4]*m[10]*m[15] + m[1]*m[4]*m[11]*m[14] + m[1]*m[6]*m[8]*m[15] - m[1]*m[6]*m[11]*m[12] - m[1]*m[7]*m[8]*m[14] + m[1]*m[7]*m[10]*m[12] + m[2]*m[4]*m[9]*m[15] - m[2]*m[4]*m[11]*m[13] - m[2]*m[5]*m[8]*m[15] + m[2]*m[5]*m[11]*m[12] + m[2]*m[7]*m[8]*m[13] - m[2]*m[7]*m[9]*m[12] - m[3]*m[4]*m[9]*m[14] + m[3]*m[4]*m[10]*m[13] + m[3]*m[5]*m[8]*m[14] - m[3]*m[5]*m[10]*m[12] - m[3]*m[6]*m[8]*m[13] + m[3]*m[6]*m[9]*m[12]
<<end ->>
}
<<end>>
<<if eq $m $n>>
// Inv computes the inverse of a square matrix. An inverse is a square matrix such that when multiplied by the
// original, yields the identity.
//
// M_inv * M = M * M_inv = I
//
// In this library, the math is precomputed, and uses no loops, though the multiplications, additions, determinant calculation, and scaling
// are still done. This can still be (relatively) expensive for a 4x4.
//
// This function checks the determinant to see if the matrix is invertible.
// If the determinant is 0.0, this function returns the zero matrix. However, due to floating point errors, it is
// entirely plausible to get a false positive or negative.
// In the future, an alternate function may be written which takes in a pre-computed determinant.
func (m <<$type>>) Inv() <<$type>> {
det := m.Det()
if FloatEqual(det, float32(0.0)) {
return <<$type>>{}
}
<<if eq $m 2>>
retMat := Mat2{m[3], -m[1], -m[2], m[0]}
<<else if eq $m 3>>
retMat := Mat3{
m[4]*m[8] - m[5]*m[7],
m[2]*m[7] - m[1]*m[8],
m[1]*m[5] - m[2]*m[4],
m[5]*m[6] - m[3]*m[8],
m[0]*m[8] - m[2]*m[6],
m[2]*m[3] - m[0]*m[5],
m[3]*m[7] - m[4]*m[6],
m[1]*m[6] - m[0]*m[7],
m[0]*m[4] - m[1]*m[3],
}
<<else if eq $m 4>>
retMat := Mat4{
-m[7]*m[10]*m[13] + m[6]*m[11]*m[13] + m[7]*m[9]*m[14] - m[5]*m[11]*m[14] - m[6]*m[9]*m[15] + m[5]*m[10]*m[15],
m[3]*m[10]*m[13] - m[2]*m[11]*m[13] - m[3]*m[9]*m[14] + m[1]*m[11]*m[14] + m[2]*m[9]*m[15] - m[1]*m[10]*m[15],
-m[3]*m[6]*m[13] + m[2]*m[7]*m[13] + m[3]*m[5]*m[14] - m[1]*m[7]*m[14] - m[2]*m[5]*m[15] + m[1]*m[6]*m[15],
m[3]*m[6]*m[9] - m[2]*m[7]*m[9] - m[3]*m[5]*m[10] + m[1]*m[7]*m[10] + m[2]*m[5]*m[11] - m[1]*m[6]*m[11],
m[7]*m[10]*m[12] - m[6]*m[11]*m[12] - m[7]*m[8]*m[14] + m[4]*m[11]*m[14] + m[6]*m[8]*m[15] - m[4]*m[10]*m[15],
-m[3]*m[10]*m[12] + m[2]*m[11]*m[12] + m[3]*m[8]*m[14] - m[0]*m[11]*m[14] - m[2]*m[8]*m[15] + m[0]*m[10]*m[15],
m[3]*m[6]*m[12] - m[2]*m[7]*m[12] - m[3]*m[4]*m[14] + m[0]*m[7]*m[14] + m[2]*m[4]*m[15] - m[0]*m[6]*m[15],
-m[3]*m[6]*m[8] + m[2]*m[7]*m[8] + m[3]*m[4]*m[10] - m[0]*m[7]*m[10] - m[2]*m[4]*m[11] + m[0]*m[6]*m[11],
-m[7]*m[9]*m[12] + m[5]*m[11]*m[12] + m[7]*m[8]*m[13] - m[4]*m[11]*m[13] - m[5]*m[8]*m[15] + m[4]*m[9]*m[15],
m[3]*m[9]*m[12] - m[1]*m[11]*m[12] - m[3]*m[8]*m[13] + m[0]*m[11]*m[13] + m[1]*m[8]*m[15] - m[0]*m[9]*m[15],
-m[3]*m[5]*m[12] + m[1]*m[7]*m[12] + m[3]*m[4]*m[13] - m[0]*m[7]*m[13] - m[1]*m[4]*m[15] + m[0]*m[5]*m[15],
m[3]*m[5]*m[8] - m[1]*m[7]*m[8] - m[3]*m[4]*m[9] + m[0]*m[7]*m[9] + m[1]*m[4]*m[11] - m[0]*m[5]*m[11],
m[6]*m[9]*m[12] - m[5]*m[10]*m[12] - m[6]*m[8]*m[13] + m[4]*m[10]*m[13] + m[5]*m[8]*m[14] - m[4]*m[9]*m[14],
-m[2]*m[9]*m[12] + m[1]*m[10]*m[12] + m[2]*m[8]*m[13] - m[0]*m[10]*m[13] - m[1]*m[8]*m[14] + m[0]*m[9]*m[14],
m[2]*m[5]*m[12] - m[1]*m[6]*m[12] - m[2]*m[4]*m[13] + m[0]*m[6]*m[13] + m[1]*m[4]*m[14] - m[0]*m[5]*m[14],
-m[2]*m[5]*m[8] + m[1]*m[6]*m[8] + m[2]*m[4]*m[9] - m[0]*m[6]*m[9] - m[1]*m[4]*m[10] + m[0]*m[5]*m[10],
}
<<end>>
return retMat.Mul(1 / det)
}
<<end>>
// ApproxEqual performs an element-wise approximate equality test between two matrices,
// as if FloatEqual had been used.
func (m1 <<$type>>) ApproxEqual(m2 <<$type>>) bool {
for i := range m1 {
if !FloatEqual(m1[i], m2[i]) {
return false
}
}
return true
}
// ApproxEqualThreshold performs an element-wise approximate equality test between two matrices
// with a given epsilon threshold, as if FloatEqualThreshold had been used.
func (m1 <<$type>>) ApproxEqualThreshold(m2 <<$type>>, threshold float32) bool {
for i := range m1 {
if !FloatEqualThreshold(m1[i], m2[i], threshold) {
return false
}
}
return true
}
// ApproxEqualFunc performs an element-wise approximate equality test between two matrices
// with a given equality functions, intended to be used with FloatEqualFunc; although and comparison
// function may be used in practice.
func (m1 <<$type>>) ApproxFuncEqual(m2 <<$type>>, eq func(float32, float32) bool) bool {
for i := range m1 {
if !eq(m1[i], m2[i]) {
return false
}
}
return true
}
// At returns the matrix element at the given row and column.
// This is equivalent to mat[col * numRow + row] where numRow is constant
// (E.G. for a Mat3x2 it's equal to 3)
//
// This method is garbage-in garbage-out. For instance, on a Mat4 asking for
// At(5,0) will work just like At(1,1). Or it may panic if it's out of bounds.
func (m <<$type>>) At(row, col int) float32 {
return m[col*<<$m>>+row]
}
// Set sets the corresponding matrix element at the given row and column.
// This has a pointer receiver because it mutates the matrix.
//
// This method is garbage-in garbage-out. For instance, on a Mat4 asking for
// Set(5,0,val) will work just like Set(1,1,val). Or it may panic if it's out of bounds.
func (m *<<$type>>) Set(row, col int, value float32) {
m[col*<<$m>>+row] = value
}
// Index returns the index of the given row and column, to be used with direct
// access. E.G. Index(0,0) = 0.
//
// This is a garbage-in garbage-out method. For instance, on a Mat4 asking for the index of
// (5,0) will work the same as asking for (1,1). Or it may give you a value that will cause
// a panic if you try to access the array with it if it's truly out of bounds.
func (m <<$type>>) Index(row, col int) int {
return col*<<$m>> + row
}
// Row returns a vector representing the corresponding row (starting at row 0).
// This package makes no distinction between row and column vectors, so it
// will be a normal VecM for a MxN matrix.
func (m <<$type>>) Row(row int) <<typename $n 1>> {
return <<typename $n 1>>{<<range $i := iter 0 $n>>m[row+<<mul $m $i>>],<<end>>}
}
// Rows decomposes a matrix into its corresponding row vectors.
// This is equivalent to calling mat.Row for each row.
func (m <<$type>>) Rows() (<<repeat $m "row%d" ",">> <<typename $n 1>>) {
return <<repeat $m "m.Row(%d)" ",">>
}
// Col returns a vector representing the corresponding column (starting at col 0).
// This package makes no distinction between row and column vectors, so it
// will be a normal VecN for a MxN matrix.
func (m <<$type>>) Col(col int) <<typename $m 1>> {
return <<typename $m 1>>{<<range $i := iter 0 $m>>m[col*<<$m>>+<<$i>>],<<end>>}
}
// Cols decomposes a matrix into its corresponding column vectors.
// This is equivalent to calling mat.Col for each column.
func (m <<$type>>) Cols() (<<repeat $n "col%d" ",">> <<typename $m 1>>) {
return <<repeat $n "m.Col(%d)" ",">>
}
<<if eq $m $n>>
// Trace is a basic operation on a square matrix that simply
// sums up all elements on the main diagonal (meaning all elements such that row==col).
func (m <<$type>>) Trace() float32 {
return <<range $i := iter 0 $m>><<sep "+" $i>> m[<<mul $i $m | add $i>>]<<end>>
}
<<end>>
// Abs returns the element-wise absolute value of this matrix
func (m <<$type>>) Abs() <<$type>> {
return <<$type>>{<<repeat (mul $m $n) "Abs(m[%d])" ",">>}
}
// Pretty prints the matrix
func (m <<$type>>) String() string {
buf := new(bytes.Buffer)
w := tabwriter.NewWriter(buf, 4, 4, 1, ' ', tabwriter.AlignRight)
for i := 0; i < <<$m>>; i++ {
for _, col := range m.Row(i) {
fmt.Fprintf(w, "%f\t", col)
}
fmt.Fprintln(w, "")
}
w.Flush()
return buf.String()
}
<<end>><<end>> <</* range $m range $n */>>

121
vendor/github.com/go-gl/mathgl/mgl32/mempool.go generated vendored Normal file
View File

@@ -0,0 +1,121 @@
// Copyright 2014 The go-gl Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mgl32
import (
"sync"
)
var (
slicePools []*sync.Pool
listLock sync.RWMutex
)
var shouldPool = true
func DisableMemoryPooling() {
shouldPool = false
}
// Returns the given memory pool. If the pool doesn't exist, it will
// create all pools up to element i. The number "i" corresponds to "p"
// in most other comments. That is, it's Ceil(log_2(whatever)). So i=0
// means you'll get the pool for slices of size 1, i=1 for size 2, i=2 for size 4,
// and so on.
//
// This is concurrency safe and uses an RWMutex to protect the list expansion.
func getPool(i int) *sync.Pool {
listLock.RLock()
if i >= len(slicePools) {
// Promote to a write lock because we now
// need to mutate the pool
listLock.RUnlock()
listLock.Lock()
defer listLock.Unlock()
for n := i - len(slicePools); n >= 0; n-- {
newFunc := genPoolNew(1 << uint(len(slicePools)))
slicePools = append(slicePools, &sync.Pool{New: newFunc})
}
} else {
defer listLock.RUnlock()
}
return slicePools[i]
}
func genPoolNew(i int) func() interface{} {
return func() interface{} {
return make([]float32, 0, i)
}
}
// Grabs a slice from the memory pool, such that its cap
// is 2^p where p is Ceil(log_2(size)). It will be downsliced
// such that the len is size.
func grabFromPool(size int) []float32 {
pool, exact := binLog(size)
// Tried to grab something of size
// zero or less
if pool == -1 {
return nil
}
// If the log is not exact, we
// need to "overallocate" so we have
// log+1
if !exact {
pool++
}
slice := getPool(pool).Get().([]float32)
slice = slice[:size]
return slice
}
// Returns a slice to the appropriate pool. If the slice does not have a cap that's precisely
// a power of 2, this will panic.
func returnToPool(slice []float32) {
if cap(slice) == 0 {
return
}
pool, exact := binLog(cap(slice))
if !exact {
panic("attempt to pool slice with non-exact cap. If you're a user, please file an issue with github.com/go-gl/mathgl about this bug. This should never happen.")
}
getPool(pool).Put(slice)
}
// This returns the integer base 2 log of the value
// and whether the log is exact or rounded down.
//
// This is only for positive integers.
//
// There are faster ways to do this, I'm open to suggestions. Most rely on knowing system endianness
// which Go makes hard to do. I'm hesistant to use float conversions and the math package because of off-by-one errors.
func binLog(val int) (int, bool) {
if val <= 0 {
return -1, false
}
exact := true
l := 0
for ; val > 1; val = val >> 1 {
// If the current lsb is 1 and the number
// is not equal to 1, this is not an exact
// log, but rather a rounding of it
if val&1 != 0 {
exact = false
}
l++
}
return l, exact
}

98
vendor/github.com/go-gl/mathgl/mgl32/project.go generated vendored Normal file
View File

@@ -0,0 +1,98 @@
// Copyright 2014 The go-gl Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mgl32
import (
"errors"
"math"
)
func Ortho(left, right, bottom, top, near, far float32) Mat4 {
rml, tmb, fmn := (right - left), (top - bottom), (far - near)
return Mat4{float32(2. / rml), 0, 0, 0, 0, float32(2. / tmb), 0, 0, 0, 0, float32(-2. / fmn), 0, float32(-(right + left) / rml), float32(-(top + bottom) / tmb), float32(-(far + near) / fmn), 1}
}
// Equivalent to Ortho with the near and far planes being -1 and 1, respectively
func Ortho2D(left, right, bottom, top float32) Mat4 {
return Ortho(left, right, bottom, top, -1, 1)
}
func Perspective(fovy, aspect, near, far float32) Mat4 {
// fovy = (fovy * math.Pi) / 180.0 // convert from degrees to radians
nmf, f := near-far, float32(1./math.Tan(float64(fovy)/2.0))
return Mat4{float32(f / aspect), 0, 0, 0, 0, float32(f), 0, 0, 0, 0, float32((near + far) / nmf), -1, 0, 0, float32((2. * far * near) / nmf), 0}
}
func Frustum(left, right, bottom, top, near, far float32) Mat4 {
rml, tmb, fmn := (right - left), (top - bottom), (far - near)
A, B, C, D := (right+left)/rml, (top+bottom)/tmb, -(far+near)/fmn, -(2*far*near)/fmn
return Mat4{float32((2. * near) / rml), 0, 0, 0, 0, float32((2. * near) / tmb), 0, 0, float32(A), float32(B), float32(C), -1, 0, 0, float32(D), 0}
}
func LookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ float32) Mat4 {
return LookAtV(Vec3{eyeX, eyeY, eyeZ}, Vec3{centerX, centerY, centerZ}, Vec3{upX, upY, upZ})
}
// LookAtV generates a transform matrix from world space into the specific eye space
func LookAtV(eye, center, up Vec3) Mat4 {
f := center.Sub(eye).Normalize()
s := f.Cross(up.Normalize()).Normalize()
u := s.Cross(f)
M := Mat4{
s[0], u[0], -f[0], 0,
s[1], u[1], -f[1], 0,
s[2], u[2], -f[2], 0,
0, 0, 0, 1,
}
return M.Mul4(Translate3D(float32(-eye[0]), float32(-eye[1]), float32(-eye[2])))
}
// Transform a set of coordinates from object space (in obj) to window coordinates (with depth)
//
// Window coordinates are continuous, not discrete (well, as continuous as an IEEE Floating Point can be), so you won't get exact pixel locations
// without rounding or similar
func Project(obj Vec3, modelview, projection Mat4, initialX, initialY, width, height int) (win Vec3) {
obj4 := obj.Vec4(1)
vpp := projection.Mul4(modelview).Mul4x1(obj4)
vpp = vpp.Mul(1 / vpp.W())
win[0] = float32(initialX) + (float32(width)*(vpp[0]+1))/2
win[1] = float32(initialY) + (float32(height)*(vpp[1]+1))/2
win[2] = (vpp[2] + 1) / 2
return win
}
// Transform a set of window coordinates to object space. If your MVP (projection.Mul(modelview) matrix is not invertible, this will return an error
//
// Note that the projection may not be perfect if you use strict pixel locations rather than the exact values given by Projectf.
// (It's still unlikely to be perfect due to precision errors, but it will be closer)
func UnProject(win Vec3, modelview, projection Mat4, initialX, initialY, width, height int) (obj Vec3, err error) {
inv := projection.Mul4(modelview).Inv()
var blank Mat4
if inv == blank {
return Vec3{}, errors.New("Could not find matrix inverse (projection times modelview is probably non-singular)")
}
obj4 := inv.Mul4x1(Vec4{
(2 * (win[0] - float32(initialX)) / float32(width)) - 1,
(2 * (win[1] - float32(initialY)) / float32(height)) - 1,
2*win[2] - 1,
1.0,
})
obj = obj4.Vec3()
//if obj4[3] > MinValue {}
obj[0] /= obj4[3]
obj[1] /= obj4[3]
obj[2] /= obj4[3]
return obj, nil
}

458
vendor/github.com/go-gl/mathgl/mgl32/quat.go generated vendored Normal file
View File

@@ -0,0 +1,458 @@
// Copyright 2014 The go-gl Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mgl32
import (
"math"
)
// A rotation order is the order in which
// rotations will be transformed for the purposes of AnglesToQuat
type RotationOrder int
const (
XYX RotationOrder = iota
XYZ
XZX
XZY
YXY
YXZ
YZY
YZX
ZYZ
ZYX
ZXZ
ZXY
)
// A Quaternion is an extension of the imaginary numbers; there's all sorts of
// interesting theory behind it. In 3D graphics we mostly use it as a cheap way of
// representing rotation since quaternions are cheaper to multiply by, and easier to
// interpolate than matrices.
//
// A Quaternion has two parts: W, the so-called scalar component,
// and "V", the vector component. The vector component is considered to
// be the part in 3D space, while W (loosely interpreted) is its 4D coordinate.
type Quat struct {
W float32
V Vec3
}
// The quaternion identity: W=1; V=(0,0,0).
//
// As with all identities, multiplying any quaternion by this will yield the same
// quaternion you started with.
func QuatIdent() Quat {
return Quat{1., Vec3{0, 0, 0}}
}
// Creates an angle from an axis and an angle relative to that axis.
//
// This is cheaper than HomogRotate3D.
func QuatRotate(angle float32, axis Vec3) Quat {
// angle = (float32(math.Pi) * angle) / 180.0
c, s := float32(math.Cos(float64(angle/2))), float32(math.Sin(float64(angle/2)))
return Quat{c, axis.Mul(s)}
}
// A convenient alias for q.V[0]
func (q Quat) X() float32 {
return q.V[0]
}
// A convenient alias for q.V[1]
func (q Quat) Y() float32 {
return q.V[1]
}
// A convenient alias for q.V[2]
func (q Quat) Z() float32 {
return q.V[2]
}
// Adds two quaternions. It's no more complicated than
// adding their W and V components.
func (q1 Quat) Add(q2 Quat) Quat {
return Quat{q1.W + q2.W, q1.V.Add(q2.V)}
}
// Subtracts two quaternions. It's no more complicated than
// subtracting their W and V components.
func (q1 Quat) Sub(q2 Quat) Quat {
return Quat{q1.W - q2.W, q1.V.Sub(q2.V)}
}
// Multiplies two quaternions. This can be seen as a rotation. Note that
// Multiplication is NOT commutative, meaning q1.Mul(q2) does not necessarily
// equal q2.Mul(q1).
func (q1 Quat) Mul(q2 Quat) Quat {
return Quat{q1.W*q2.W - q1.V.Dot(q2.V), q1.V.Cross(q2.V).Add(q2.V.Mul(q1.W)).Add(q1.V.Mul(q2.W))}
}
// Scales every element of the quaternion by some constant factor.
func (q1 Quat) Scale(c float32) Quat {
return Quat{q1.W * c, Vec3{q1.V[0] * c, q1.V[1] * c, q1.V[2] * c}}
}
// Returns the conjugate of a quaternion. Equivalent to
// Quat{q1.W, q1.V.Mul(-1)}
func (q1 Quat) Conjugate() Quat {
return Quat{q1.W, q1.V.Mul(-1)}
}
// Returns the Length of the quaternion, also known as its Norm. This is the same thing as
// the Len of a Vec4
func (q1 Quat) Len() float32 {
return float32(math.Sqrt(float64(q1.W*q1.W + q1.V[0]*q1.V[0] + q1.V[1]*q1.V[1] + q1.V[2]*q1.V[2])))
}
// Norm() is an alias for Len() since both are very common terms.
func (q1 Quat) Norm() float32 {
return q1.Len()
}
// Normalizes the quaternion, returning its versor (unit quaternion).
//
// This is the same as normalizing it as a Vec4.
func (q1 Quat) Normalize() Quat {
length := q1.Len()
if FloatEqual(1, length) {
return q1
}
if length == 0 {
return QuatIdent()
}
if length == InfPos {
length = MaxValue
}
return Quat{q1.W * 1 / length, q1.V.Mul(1 / length)}
}
// The inverse of a quaternion. The inverse is equivalent
// to the conjugate divided by the square of the length.
//
// This method computes the square norm by directly adding the sum
// of the squares of all terms instead of actually squaring q1.Len(),
// both for performance and precision.
func (q1 Quat) Inverse() Quat {
return q1.Conjugate().Scale(1 / q1.Dot(q1))
}
// Rotates a vector by the rotation this quaternion represents.
// This will result in a 3D vector. Strictly speaking, this is
// equivalent to q1.v.q* where the "."" is quaternion multiplication and v is interpreted
// as a quaternion with W 0 and V v. In code:
// q1.Mul(Quat{0,v}).Mul(q1.Conjugate()), and
// then retrieving the imaginary (vector) part.
//
// In practice, we hand-compute this in the general case and simplify
// to save a few operations.
func (q1 Quat) Rotate(v Vec3) Vec3 {
cross := q1.V.Cross(v)
// v + 2q_w * (q_v x v) + 2q_v x (q_v x v)
return v.Add(cross.Mul(2 * q1.W)).Add(q1.V.Mul(2).Cross(cross))
}
// Returns the homogeneous 3D rotation matrix corresponding to the quaternion.
func (q1 Quat) Mat4() Mat4 {
w, x, y, z := q1.W, q1.V[0], q1.V[1], q1.V[2]
return Mat4{
1 - 2*y*y - 2*z*z, 2*x*y + 2*w*z, 2*x*z - 2*w*y, 0,
2*x*y - 2*w*z, 1 - 2*x*x - 2*z*z, 2*y*z + 2*w*x, 0,
2*x*z + 2*w*y, 2*y*z - 2*w*x, 1 - 2*x*x - 2*y*y, 0,
0, 0, 0, 1,
}
}
// The dot product between two quaternions, equivalent to if this was a Vec4
func (q1 Quat) Dot(q2 Quat) float32 {
return q1.W*q2.W + q1.V[0]*q2.V[0] + q1.V[1]*q2.V[1] + q1.V[2]*q2.V[2]
}
// Returns whether the quaternions are approximately equal, as if
// FloatEqual was called on each matching element
func (q1 Quat) ApproxEqual(q2 Quat) bool {
return FloatEqual(q1.W, q2.W) && q1.V.ApproxEqual(q2.V)
}
// Returns whether the quaternions are approximately equal with a given tolerence, as if
// FloatEqualThreshold was called on each matching element with the given epsilon
func (q1 Quat) ApproxEqualThreshold(q2 Quat, epsilon float32) bool {
return FloatEqualThreshold(q1.W, q2.W, epsilon) && q1.V.ApproxEqualThreshold(q2.V, epsilon)
}
// Returns whether the quaternions are approximately equal using the given comparison function, as if
// the function had been called on each individual element
func (q1 Quat) ApproxEqualFunc(q2 Quat, f func(float32, float32) bool) bool {
return f(q1.W, q2.W) && q1.V.ApproxFuncEqual(q2.V, f)
}
// Returns whether the quaternions represents the same orientation
//
// Different values can represent the same orientation (q == -q) because quaternions avoid singularities
// and discontinuities involved with rotation in 3 dimensions by adding extra dimensions
func (q1 Quat) OrientationEqual(q2 Quat) bool {
return q1.OrientationEqualThreshold(q2, Epsilon)
}
// Returns whether the quaternions represents the same orientation with a given tolerence
func (q1 Quat) OrientationEqualThreshold(q2 Quat, epsilon float32) bool {
return Abs(q1.Normalize().Dot(q2.Normalize())) > 1-epsilon
}
// Slerp is *S*pherical *L*inear Int*erp*olation, a method of interpolating
// between two quaternions. This always takes the straightest path on the sphere between
// the two quaternions, and maintains constant velocity.
//
// However, it's expensive and QuatSlerp(q1,q2) is not the same as QuatSlerp(q2,q1)
func QuatSlerp(q1, q2 Quat, amount float32) Quat {
q1, q2 = q1.Normalize(), q2.Normalize()
dot := q1.Dot(q2)
// If the inputs are too close for comfort, linearly interpolate and normalize the result.
if dot > 0.9995 {
return QuatNlerp(q1, q2, amount)
}
// This is here for precision errors, I'm perfectly aware that *technically* the dot is bound [-1,1], but since Acos will freak out if it's not (even if it's just a liiiiitle bit over due to normal error) we need to clamp it
dot = Clamp(dot, -1, 1)
theta := float32(math.Acos(float64(dot))) * amount
c, s := float32(math.Cos(float64(theta))), float32(math.Sin(float64(theta)))
rel := q2.Sub(q1.Scale(dot)).Normalize()
return q1.Scale(c).Add(rel.Scale(s))
}
// *L*inear Int*erp*olation between two Quaternions, cheap and simple.
//
// Not excessively useful, but uses can be found.
func QuatLerp(q1, q2 Quat, amount float32) Quat {
return q1.Add(q2.Sub(q1).Scale(amount))
}
// *Normalized* *L*inear Int*erp*olation between two Quaternions. Cheaper than Slerp
// and usually just as good. This is literally Lerp with Normalize() called on it.
//
// Unlike Slerp, constant velocity isn't maintained, but it's much faster and
// Nlerp(q1,q2) and Nlerp(q2,q1) return the same path. You should probably
// use this more often unless you're suffering from choppiness due to the
// non-constant velocity problem.
func QuatNlerp(q1, q2 Quat, amount float32) Quat {
return QuatLerp(q1, q2, amount).Normalize()
}
// Performs a rotation in the specified order. If the order is not
// a valid RotationOrder, this function will panic
//
// The rotation "order" is more of an axis descriptor. For instance XZX would
// tell the function to interpret angle1 as a rotation about the X axis, angle2 about
// the Z axis, and angle3 about the X axis again.
//
// Based off the code for the Matlab function "angle2quat", though this implementation
// only supports 3 single angles as opposed to multiple angles.
func AnglesToQuat(angle1, angle2, angle3 float32, order RotationOrder) Quat {
var s [3]float64
var c [3]float64
s[0], c[0] = math.Sincos(float64(angle1 / 2))
s[1], c[1] = math.Sincos(float64(angle2 / 2))
s[2], c[2] = math.Sincos(float64(angle3 / 2))
ret := Quat{}
switch order {
case ZYX:
ret.W = float32(c[0]*c[1]*c[2] + s[0]*s[1]*s[2])
ret.V = Vec3{float32(c[0]*c[1]*s[2] - s[0]*s[1]*c[2]),
float32(c[0]*s[1]*c[2] + s[0]*c[1]*s[2]),
float32(s[0]*c[1]*c[2] - c[0]*s[1]*s[2]),
}
case ZYZ:
ret.W = float32(c[0]*c[1]*c[2] - s[0]*c[1]*s[2])
ret.V = Vec3{float32(c[0]*s[1]*s[2] - s[0]*s[1]*c[2]),
float32(c[0]*s[1]*c[2] + s[0]*s[1]*s[2]),
float32(s[0]*c[1]*c[2] + c[0]*c[1]*s[2]),
}
case ZXY:
ret.W = float32(c[0]*c[1]*c[2] - s[0]*s[1]*s[2])
ret.V = Vec3{float32(c[0]*s[1]*c[2] - s[0]*c[1]*s[2]),
float32(c[0]*c[1]*s[2] + s[0]*s[1]*c[2]),
float32(c[0]*s[1]*s[2] + s[0]*c[1]*c[2]),
}
case ZXZ:
ret.W = float32(c[0]*c[1]*c[2] - s[0]*c[1]*s[2])
ret.V = Vec3{float32(c[0]*s[1]*c[2] + s[0]*s[1]*s[2]),
float32(s[0]*s[1]*c[2] - c[0]*s[1]*s[2]),
float32(c[0]*c[1]*s[2] + s[0]*c[1]*c[2]),
}
case YXZ:
ret.W = float32(c[0]*c[1]*c[2] + s[0]*s[1]*s[2])
ret.V = Vec3{float32(c[0]*s[1]*c[2] + s[0]*c[1]*s[2]),
float32(s[0]*c[1]*c[2] - c[0]*s[1]*s[2]),
float32(c[0]*c[1]*s[2] - s[0]*s[1]*c[2]),
}
case YXY:
ret.W = float32(c[0]*c[1]*c[2] - s[0]*c[1]*s[2])
ret.V = Vec3{float32(c[0]*s[1]*c[2] + s[0]*s[1]*s[2]),
float32(s[0]*c[1]*c[2] + c[0]*c[1]*s[2]),
float32(c[0]*s[1]*s[2] - s[0]*s[1]*c[2]),
}
case YZX:
ret.W = float32(c[0]*c[1]*c[2] - s[0]*s[1]*s[2])
ret.V = Vec3{float32(c[0]*c[1]*s[2] + s[0]*s[1]*c[2]),
float32(c[0]*s[1]*s[2] + s[0]*c[1]*c[2]),
float32(c[0]*s[1]*c[2] - s[0]*c[1]*s[2]),
}
case YZY:
ret.W = float32(c[0]*c[1]*c[2] - s[0]*c[1]*s[2])
ret.V = Vec3{float32(s[0]*s[1]*c[2] - c[0]*s[1]*s[2]),
float32(c[0]*c[1]*s[2] + s[0]*c[1]*c[2]),
float32(c[0]*s[1]*c[2] + s[0]*s[1]*s[2]),
}
case XYZ:
ret.W = float32(c[0]*c[1]*c[2] - s[0]*s[1]*s[2])
ret.V = Vec3{float32(c[0]*s[1]*s[2] + s[0]*c[1]*c[2]),
float32(c[0]*s[1]*c[2] - s[0]*c[1]*s[2]),
float32(c[0]*c[1]*s[2] + s[0]*s[1]*c[2]),
}
case XYX:
ret.W = float32(c[0]*c[1]*c[2] - s[0]*c[1]*s[2])
ret.V = Vec3{float32(c[0]*c[1]*s[2] + s[0]*c[1]*c[2]),
float32(c[0]*s[1]*c[2] + s[0]*s[1]*s[2]),
float32(s[0]*s[1]*c[2] - c[0]*s[1]*s[2]),
}
case XZY:
ret.W = float32(c[0]*c[1]*c[2] + s[0]*s[1]*s[2])
ret.V = Vec3{float32(s[0]*c[1]*c[2] - c[0]*s[1]*s[2]),
float32(c[0]*c[1]*s[2] - s[0]*s[1]*c[2]),
float32(c[0]*s[1]*c[2] + s[0]*c[1]*s[2]),
}
case XZX:
ret.W = float32(c[0]*c[1]*c[2] - s[0]*c[1]*s[2])
ret.V = Vec3{float32(c[0]*c[1]*s[2] + s[0]*c[1]*c[2]),
float32(c[0]*s[1]*s[2] - s[0]*s[1]*c[2]),
float32(c[0]*s[1]*c[2] + s[0]*s[1]*s[2]),
}
default:
panic("Unsupported rotation order")
}
return ret
}
// Mat4ToQuat converts a pure rotation matrix into a quaternion
func Mat4ToQuat(m Mat4) Quat {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
if tr := m[0] + m[5] + m[10]; tr > 0 {
s := float32(0.5 / math.Sqrt(float64(tr+1.0)))
return Quat{
0.25 / s,
Vec3{
(m[6] - m[9]) * s,
(m[8] - m[2]) * s,
(m[1] - m[4]) * s,
},
}
}
if (m[0] > m[5]) && (m[0] > m[10]) {
s := float32(2.0 * math.Sqrt(float64(1.0+m[0]-m[5]-m[10])))
return Quat{
(m[6] - m[9]) / s,
Vec3{
0.25 * s,
(m[4] + m[1]) / s,
(m[8] + m[2]) / s,
},
}
}
if m[5] > m[10] {
s := float32(2.0 * math.Sqrt(float64(1.0+m[5]-m[0]-m[10])))
return Quat{
(m[8] - m[2]) / s,
Vec3{
(m[4] + m[1]) / s,
0.25 * s,
(m[9] + m[6]) / s,
},
}
}
s := float32(2.0 * math.Sqrt(float64(1.0+m[10]-m[0]-m[5])))
return Quat{
(m[1] - m[4]) / s,
Vec3{
(m[8] + m[2]) / s,
(m[9] + m[6]) / s,
0.25 * s,
},
}
}
// QuatLookAtV creates a rotation from an eye vector to a center vector
//
// It assumes the front of the rotated object at Z- and up at Y+
func QuatLookAtV(eye, center, up Vec3) Quat {
// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#I_need_an_equivalent_of_gluLookAt__How_do_I_orient_an_object_towards_a_point__
// https://bitbucket.org/sinbad/ogre/src/d2ef494c4a2f5d6e2f0f17d3bfb9fd936d5423bb/OgreMain/src/OgreCamera.cpp?at=default#cl-161
direction := center.Sub(eye).Normalize()
// Find the rotation between the front of the object (that we assume towards Z-,
// but this depends on your model) and the desired direction
rotDir := QuatBetweenVectors(Vec3{0, 0, -1}, direction)
// Recompute up so that it's perpendicular to the direction
// You can skip that part if you really want to force up
//right := direction.Cross(up)
//up = right.Cross(direction)
// Because of the 1rst rotation, the up is probably completely screwed up.
// Find the rotation between the "up" of the rotated object, and the desired up
upCur := rotDir.Rotate(Vec3{0, 1, 0})
rotUp := QuatBetweenVectors(upCur, up)
rotTarget := rotUp.Mul(rotDir) // remember, in reverse order.
return rotTarget.Inverse() // camera rotation should be inversed!
}
// QuatBetweenVectors calculates the rotation between two vectors
func QuatBetweenVectors(start, dest Vec3) Quat {
// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#I_need_an_equivalent_of_gluLookAt__How_do_I_orient_an_object_towards_a_point__
// https://github.com/g-truc/glm/blob/0.9.5/glm/gtx/quaternion.inl#L225
// https://bitbucket.org/sinbad/ogre/src/d2ef494c4a2f5d6e2f0f17d3bfb9fd936d5423bb/OgreMain/include/OgreVector3.h?at=default#cl-654
start = start.Normalize()
dest = dest.Normalize()
epsilon := float32(0.001)
cosTheta := start.Dot(dest)
if cosTheta < -1.0+epsilon {
// special case when vectors in opposite directions:
// there is no "ideal" rotation axis
// So guess one; any will do as long as it's perpendicular to start
axis := Vec3{1, 0, 0}.Cross(start)
if axis.Dot(axis) < epsilon {
// bad luck, they were parallel, try again!
axis = Vec3{0, 1, 0}.Cross(start)
}
return QuatRotate(math.Pi, axis.Normalize())
}
axis := start.Cross(dest)
s := float32(math.Sqrt(float64(1.0+cosTheta) * 2.0))
return Quat{
s * 0.5,
axis.Mul(1.0 / s),
}
}

306
vendor/github.com/go-gl/mathgl/mgl32/shapes.go generated vendored Normal file
View File

@@ -0,0 +1,306 @@
// Copyright 2014 The go-gl Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mgl32
import (
"fmt"
"math"
)
// Generates a circle centered at (0,0) with a given radius.
// The radii are assumed to be in GL's coordinate sizing.
//
// Technically this draws an ellipse with two axes that match with the X and Y axes, the reason it has a radiusX and radiusY is because GL's coordinate system
// is proportional to screen width and screen height. So if you have a non-square viewport, a single radius will appear
// to "squash" the circle in one direction (usually the Y direction), so the X and Y radius allow for a circle to be made.
// A good way to get the correct radii is with mathgl.ScreenToGLCoords(radius, radius, screenWidth, screenHeight) which will get you the correct
// proportional GL coords.
//
// The numSlices argument specifies how many triangles you want your circle divided into, setting this
// number to too low a value may cause problem (and too high will cause it to take a lot of memory and time to compute
// without much gain in resolution).
//
// This uses discrete triangles, not a triangle fan
func Circle(radiusX, radiusY float32, numSlices int) []Vec2 {
twoPi := float32(2.0 * math.Pi)
circlePoints := make([]Vec2, 0, numSlices*3)
center := Vec2{0.0, 0.0}
previous := Vec2{radiusX, 0.0}
for theta := twoPi / float32(numSlices); !FloatEqual(theta, twoPi); theta = Clamp(theta+twoPi/float32(numSlices), 0.0, twoPi) {
sin, cos := math.Sincos(float64(theta))
curr := Vec2{float32(cos) * radiusX, float32(sin) * radiusY}
circlePoints = append(circlePoints, center, previous, curr)
previous = curr
}
// Now add the final point at theta=2pi
circlePoints = append(circlePoints, center, previous, Vec2{radiusX, 0.0})
return circlePoints
}
// Generates a 2-triangle rectangle for use with GL_TRIANGLES. The width and height should use GL's proportions (that is, where a width of 1.0
// is equivalent to half of the width of the render target); however, the y-coordinates grow downwards, not upwards. That is, it
// assumes you want the origin of the rectangle with the top-left corner at (0.0,0.0).
//
// Keep in mind that GL's coordinate system is proportional, so width=height will not result in a square unless your viewport is square.
// If you want to maintain proportionality regardless of screen size, use the results of w,h := ScreenToGLCoordsf(absoluteWidth, absoluteHeight, screenWidth, screenHeight);
// w,h=w+1,h-1 in the call to this function. (The w+1,h-1 step maps the coordinates to start at 0.0 rather than -1.0)
func Rect(width, height float32) []Vec2 {
return []Vec2{
{0.0, 0.0},
{0.0, -height},
{width, -height},
{0.0, 0.0},
{width, -height},
{width, 0.0},
}
}
func QuadraticBezierCurve2D(t float32, cPoint1, cPoint2, cPoint3 Vec2) Vec2 {
if t < 0.0 || t > 1.0 {
panic("Can't interpolate on bezier curve with t out of range [0.0,1.0]")
}
return cPoint1.Mul((1.0 - t) * (1.0 - t)).Add(cPoint2.Mul(2 * (1 - t) * t)).Add(cPoint3.Mul(t * t))
}
func QuadraticBezierCurve3D(t float32, cPoint1, cPoint2, cPoint3 Vec3) Vec3 {
if t < 0.0 || t > 1.0 {
panic("Can't interpolate on bezier curve with t out of range [0.0,1.0]")
}
return cPoint1.Mul((1.0 - t) * (1.0 - t)).Add(cPoint2.Mul(2 * (1 - t) * t)).Add(cPoint3.Mul(t * t))
}
func CubicBezierCurve2D(t float32, cPoint1, cPoint2, cPoint3, cPoint4 Vec2) Vec2 {
if t < 0.0 || t > 1.0 {
panic("Can't interpolate on bezier curve with t out of range [0.0,1.0]")
}
return cPoint1.Mul((1 - t) * (1 - t) * (1 - t)).Add(cPoint2.Mul(3 * (1 - t) * (1 - t) * t)).Add(cPoint3.Mul(3 * (1 - t) * t * t)).Add(cPoint4.Mul(t * t * t))
}
func CubicBezierCurve3D(t float32, cPoint1, cPoint2, cPoint3, cPoint4 Vec3) Vec3 {
if t < 0.0 || t > 1.0 {
panic("Can't interpolate on bezier curve with t out of range [0.0,1.0]")
}
return cPoint1.Mul((1 - t) * (1 - t) * (1 - t)).Add(cPoint2.Mul(3 * (1 - t) * (1 - t) * t)).Add(cPoint3.Mul(3 * (1 - t) * t * t)).Add(cPoint4.Mul(t * t * t))
}
// Returns the point at point t along an n-control point Bezier curve
//
// t must be in the range 0.0 and 1.0 or this function will panic. Consider [0.0,1.0] to be similar to a percentage,
// 0.0 is first control point, and the point at 1.0 is the last control point. Any point in between is how far along the path you are between 0 and 1.
//
// This function is not sensitive to the coordinate system of the control points. It will correctly interpolate regardless of whether they're in screen coords,
// gl coords, or something else entirely
func BezierCurve2D(t float32, cPoints []Vec2) Vec2 {
if t < 0.0 || t > 1.0 {
panic("Input to bezier has t not in range [0,1]. If you think this is a precision error, use mathgl.Clamp[f|d] before calling this function")
}
n := len(cPoints) - 1
point := cPoints[0].Mul(float32(math.Pow(float64(1.0-t), float64(n))))
for i := 1; i <= n; i++ {
point = point.Add(cPoints[i].Mul(float32(float64(choose(n, i)) * math.Pow(float64(1-t), float64(n-i)) * math.Pow(float64(t), float64(i))))) // P += P_i * nCi * (1-t)^(n-i) * t^i
}
return point
}
// Same as the 2D version, except the line is in 3D space
func BezierCurve3D(t float32, cPoints []Vec3) Vec3 {
if t < 0.0 || t > 1.0 {
panic("Input to bezier has t not in range [0,1]. If you think this is a precision error, use mathgl.Clamp[f|d] before calling this function")
}
n := len(cPoints) - 1
point := cPoints[0].Mul(float32(math.Pow(float64(1.0-t), float64(n))))
for i := 1; i <= n; i++ {
point = point.Add(cPoints[i].Mul(float32(float64(choose(n, i)) * math.Pow(float64(1-t), float64(n-i)) * math.Pow(float64(t), float64(i))))) // P += P_i * nCi * (1-t)^(n-i) * t^i
}
return point
}
// Generates a bezier curve with controlPoints cPoints. The numPoints argument
// determines how many "samples" it makes along the line. For instance, a
// call to this with numPoints 2 will have exactly two points: the start and end points
// For any points above 2 it will divide it into numPoints-1 chunks (which means it will generate numPoints-2 vertices other than the beginning and end).
// So for 3 points it will divide it in half, 4 points into thirds, and so on.
//
// This is likely to get rather expensive for anything over perhaps a cubic curve.
func MakeBezierCurve2D(numPoints int, cPoints []Vec2) (line []Vec2) {
line = make([]Vec2, numPoints)
if numPoints == 0 {
return
} else if numPoints == 1 {
line[0] = cPoints[0]
return
} else if numPoints == 2 {
line[0] = cPoints[0]
line[1] = cPoints[len(cPoints)-1]
return
}
line[0] = cPoints[0]
for i := 1; i < numPoints-1; i++ {
line[i] = BezierCurve2D(Clamp(float32(i)/float32(numPoints-1), 0.0, 1.0), cPoints)
}
line[numPoints-1] = cPoints[len(cPoints)-1]
return
}
// Same as the 2D version, except with the line in 3D space
func MakeBezierCurve3D(numPoints int, cPoints []Vec3) (line []Vec3) {
line = make([]Vec3, numPoints)
if numPoints == 0 {
return
} else if numPoints == 1 {
line[0] = cPoints[0]
return
} else if numPoints == 2 {
line[0] = cPoints[0]
line[1] = cPoints[len(cPoints)-1]
return
}
line[0] = cPoints[0]
for i := 1; i < numPoints-1; i++ {
line[i] = BezierCurve3D(Clamp(float32(i)/float32(numPoints-1), 0.0, 1.0), cPoints)
}
line[numPoints-1] = cPoints[len(cPoints)-1]
return
}
// Creates a 2-dimensional Bezier surface of arbitrary degree in 3D Space
// Like the curve functions, if u or v are not in the range [0.0,1.0] the function will panic, use Clamp[f|d]
// to ensure it is correct.
//
// The control point matrix must not be jagged, or this will end up panicking from an index out of bounds exception
func BezierSurface(u, v float32, cPoints [][]Vec3) Vec3 {
if u < 0.0 || u > 1.0 || v < 1.0 || v > 1.0 {
panic("u or v not in range [0.0,1.0] in BezierSurface")
}
n := len(cPoints) - 1
m := len(cPoints[0]) - 1
point := cPoints[0][0].Mul(float32(math.Pow(float64(1.0-u), float64(n)) * math.Pow(float64(1.0-v), float64(m))))
for i := 0; i <= n; i++ {
for j := 0; j <= m; j++ {
if i == 0 && j == 0 {
continue
}
point = point.Add(cPoints[i][j].Mul(float32(float64(choose(n, i)) * math.Pow(float64(u), float64(i)) * math.Pow(float64(1.0-u), float64(n-i)) * float64(choose(m, j)) * math.Pow(float64(v), float64(j)) * math.Pow(float64(1.0-v), float64(m-j)))))
}
}
return point
}
// Does interpolation over a spline of several bezier curves. Each bezier curve must have a finite range,
// though the spline may be disjoint. The bezier curves are not required to be in any particular order.
//
// If t is out of the range of all given curves, this function will panic
func BezierSplineInterpolate2D(t float32, ranges [][2]float32, cPoints [][]Vec2) Vec2 {
if len(ranges) != len(cPoints) {
panic("Each bezier curve needs a range")
}
for i, curveRange := range ranges {
if t >= curveRange[0] && t <= curveRange[1] {
return BezierCurve2D((t-curveRange[0])/(curveRange[1]-curveRange[0]), cPoints[i])
}
}
panic("t is out of the range of all bezier curves in this spline")
}
// Does interpolation over a spline of several bezier curves. Each bezier curve must have a finite range,
// though the spline may be disjoint. The bezier curves are not required to be in any particular order.
//
// If t is out of the range of all given curves, this function will panic
func BezierSplineInterpolate3D(t float32, ranges [][2]float32, cPoints [][]Vec3) Vec3 {
if len(ranges) != len(cPoints) {
panic("Each bezier curve needs a range")
}
for i, curveRange := range ranges {
if t >= curveRange[0] && t <= curveRange[1] {
return BezierCurve3D((t-curveRange[0])/(curveRange[1]-curveRange[0]), cPoints[i])
}
}
panic("t is out of the range of all bezier curves in this spline")
}
// Reticulates ALL the Splines
//
// For the overly serious: the function is just for fun. It does nothing except prints a Maxis reference. Technically you could "reticulate splines"
// by joining a bunch of splines together, but that ruins the joke.
func ReticulateSplines(ranges [][][2]float32, cPoints [][][]Vec2, withLlamas bool) {
if !withLlamas {
fmt.Println("You can't reticulate splines without llamas, silly.")
} else {
fmt.Println("Actually, you can't even reticulate splines WITH llamas")
}
}
// Transform from pixel coordinates to GL coordinates.
//
// This assumes that your pixel coordinate system considers its origin to be in the top left corner (GL's is in the bottom left).
// The coordinates x and y may be out of the range [0,screenWidth-1] and [0,screeneHeight-1].
//
// GL's coordinate system maps [screenWidth-1,0] to [1.0,1.0] and [0,screenHeight-1] to [-1.0,-1.0]. If x and y are out of the range, they'll still
// be mapped correctly, just off the screen. (e.g. if y = 2*(screenHeight-1) you'll get -3.0 for yOut)
//
// This is similar to Unproject, except for 2D cases and much simpler (especially since an inverse may always be found)
func ScreenToGLCoords(x, y int, screenWidth, screenHeight int) (xOut, yOut float32) {
xOut = 2.0*float32(x)/float32(screenWidth-1) - 1.0
yOut = -2.0*float32(y)/float32(screenHeight-1) + 1.0
return
}
// Transform from GL's proportional system to pixel coordinates.
//
// Assumes the pixel coordinate system has its origin in the top left corner. (GL's is in the bottom left)
//
// GL's coordinate system maps [screenWidth-1,0] to [1.0,1.0] and [0,screenHeight-1] to [-1.0,-1.0]. If x and y are out of the range, they'll still
// be mapped correctly, just off the screen. (e.g. if y=-3.0, you'll get 2*(screenHeight-1) for yOut)
//
// This is similar to Project, except for 2D cases and much simpler
func GLToScreenCoords(x, y float32, screenWidth, screenHeight int) (xOut, yOut int) {
xOut = int((x + 1.0) * float32(screenWidth-1) / 2.0)
yOut = int((1.0 - y) * float32(screenHeight-1) / 2.0)
return
}
func choose(n, k int) (result int) {
if k == 0 {
return 1
} else if n == 0 {
return 0
}
result = (n - (k - 1))
for i := 2; i <= k; i++ {
result *= (n - (k - i)) / i
}
return result
}

223
vendor/github.com/go-gl/mathgl/mgl32/transform.go generated vendored Normal file
View File

@@ -0,0 +1,223 @@
// Copyright 2014 The go-gl Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mgl32
import "math"
// Rotate2D returns a rotation Matrix about a angle in 2-D space. Specifically about the origin.
// It is a 2x2 matrix, if you need a 3x3 for Homogeneous math (e.g. composition with a Translation matrix)
// see HomogRotate2D
func Rotate2D(angle float32) Mat2 {
//angle = (angle * math.Pi) / 180.0
sin, cos := float32(math.Sin(float64(angle))), float32(math.Cos(float64(angle)))
return Mat2{cos, sin, -sin, cos}
}
// Rotate3DX returns a 3x3 (non-homogeneous) Matrix that rotates by angle about the X-axis
//
// Where c is cos(angle) and s is sin(angle)
// [1 0 0]
// [0 c -s]
// [0 s c ]
func Rotate3DX(angle float32) Mat3 {
//angle = (angle * math.Pi) / 180.0
sin, cos := float32(math.Sin(float64(angle))), float32(math.Cos(float64(angle)))
return Mat3{1, 0, 0, 0, cos, sin, 0, -sin, cos}
}
// Rotate3DY returns a 3x3 (non-homogeneous) Matrix that rotates by angle about the Y-axis
//
// Where c is cos(angle) and s is sin(angle)
// [c 0 s]
// [0 1 0]
// [s 0 c ]
func Rotate3DY(angle float32) Mat3 {
//angle = (angle * math.Pi) / 180.0
sin, cos := float32(math.Sin(float64(angle))), float32(math.Cos(float64(angle)))
return Mat3{cos, 0, -sin, 0, 1, 0, sin, 0, cos}
}
// Rotate3DZ returns a 3x3 (non-homogeneous) Matrix that rotates by angle about the Z-axis
//
// Where c is cos(angle) and s is sin(angle)
// [c -s 0]
// [s c 0]
// [0 0 1 ]
func Rotate3DZ(angle float32) Mat3 {
//angle = (angle * math.Pi) / 180.0
sin, cos := float32(math.Sin(float64(angle))), float32(math.Cos(float64(angle)))
return Mat3{cos, sin, 0, -sin, cos, 0, 0, 0, 1}
}
// Translate2D returns a homogeneous (3x3 for 2D-space) Translation matrix that moves a point by Tx units in the x-direction and Ty units in the y-direction
//
// [[1, 0, Tx]]
// [[0, 1, Ty]]
// [[0, 0, 1 ]]
func Translate2D(Tx, Ty float32) Mat3 {
return Mat3{1, 0, 0, 0, 1, 0, float32(Tx), float32(Ty), 1}
}
// Translate3D returns a homogeneous (4x4 for 3D-space) Translation matrix that moves a point by Tx units in the x-direction, Ty units in the y-direction,
// and Tz units in the z-direction
//
// [[1, 0, 0, Tx]]
// [[0, 1, 0, Ty]]
// [[0, 0, 1, Tz]]
// [[0, 0, 0, 1 ]]
func Translate3D(Tx, Ty, Tz float32) Mat4 {
return Mat4{1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, float32(Tx), float32(Ty), float32(Tz), 1}
}
// Same as Rotate2D, except homogeneous (3x3 with the extra row/col being all zeroes with a one in the bottom right)
func HomogRotate2D(angle float32) Mat3 {
//angle = (angle * math.Pi) / 180.0
sin, cos := float32(math.Sin(float64(angle))), float32(math.Cos(float64(angle)))
return Mat3{cos, sin, 0, -sin, cos, 0, 0, 0, 1}
}
// Same as Rotate3DX, except homogeneous (4x4 with the extra row/col being all zeroes with a one in the bottom right)
func HomogRotate3DX(angle float32) Mat4 {
//angle = (angle * math.Pi) / 180.0
sin, cos := float32(math.Sin(float64(angle))), float32(math.Cos(float64(angle)))
return Mat4{1, 0, 0, 0, 0, cos, sin, 0, 0, -sin, cos, 0, 0, 0, 0, 1}
}
// Same as Rotate3DY, except homogeneous (4x4 with the extra row/col being all zeroes with a one in the bottom right)
func HomogRotate3DY(angle float32) Mat4 {
//angle = (angle * math.Pi) / 180.0
sin, cos := float32(math.Sin(float64(angle))), float32(math.Cos(float64(angle)))
return Mat4{cos, 0, -sin, 0, 0, 1, 0, 0, sin, 0, cos, 0, 0, 0, 0, 1}
}
// Same as Rotate3DZ, except homogeneous (4x4 with the extra row/col being all zeroes with a one in the bottom right)
func HomogRotate3DZ(angle float32) Mat4 {
//angle = (angle * math.Pi) / 180.0
sin, cos := float32(math.Sin(float64(angle))), float32(math.Cos(float64(angle)))
return Mat4{cos, sin, 0, 0, -sin, cos, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1}
}
// Scale3D creates a homogeneous 3D scaling matrix
// [[ scaleX, 0 , 0 , 0 ]]
// [[ 0 , scaleY, 0 , 0 ]]
// [[ 0 , 0 , scaleZ, 0 ]]
// [[ 0 , 0 , 0 , 1 ]]
func Scale3D(scaleX, scaleY, scaleZ float32) Mat4 {
return Mat4{float32(scaleX), 0, 0, 0, 0, float32(scaleY), 0, 0, 0, 0, float32(scaleZ), 0, 0, 0, 0, 1}
}
// Scale2D creates a homogeneous 2D scaling matrix
// [[ scaleX, 0 , 0 ]]
// [[ 0 , scaleY, 0 ]]
// [[ 0 , 0 , 1 ]]
func Scale2D(scaleX, scaleY float32) Mat3 {
return Mat3{float32(scaleX), 0, 0, 0, float32(scaleY), 0, 0, 0, 1}
}
// ShearX2D creates a homogeneous 2D shear matrix along the X-axis
func ShearX2D(shear float32) Mat3 {
return Mat3{1, 0, 0, float32(shear), 1, 0, 0, 0, 1}
}
// ShearY2D creates a homogeneous 2D shear matrix along the Y-axis
func ShearY2D(shear float32) Mat3 {
return Mat3{1, float32(shear), 0, 0, 1, 0, 0, 0, 1}
}
// ShearX3D creates a homogeneous 3D shear matrix along the X-axis
func ShearX3D(shearY, shearZ float32) Mat4 {
return Mat4{1, float32(shearY), float32(shearZ), 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1}
}
// ShearY3D creates a homogeneous 3D shear matrix along the Y-axis
func ShearY3D(shearX, shearZ float32) Mat4 {
return Mat4{1, 0, 0, 0, float32(shearX), 1, float32(shearZ), 0, 0, 0, 1, 0, 0, 0, 0, 1}
}
// ShearZ3D creates a homogeneous 3D shear matrix along the Z-axis
func ShearZ3D(shearX, shearY float32) Mat4 {
return Mat4{1, 0, 0, 0, 0, 1, 0, 0, float32(shearX), float32(shearY), 1, 0, 0, 0, 0, 1}
}
// HomogRotate3D creates a 3D rotation Matrix that rotates by (radian) angle about some arbitrary axis given by a Vector.
// It produces a homogeneous matrix (4x4)
//
// Where c is cos(angle) and s is sin(angle), and x, y, and z are the first, second, and third elements of the axis vector (respectively):
//
// [[ x^2(1-c)+c, xy(1-c)-zs, xz(1-c)+ys, 0 ]]
// [[ xy(1-c)+zs, y^2(1-c)+c, yz(1-c)-xs, 0 ]]
// [[ xz(1-c)-ys, yz(1-c)+xs, z^2(1-c)+c, 0 ]]
// [[ 0 , 0 , 0 , 1 ]]
func HomogRotate3D(angle float32, axis Vec3) Mat4 {
x, y, z := axis[0], axis[1], axis[2]
s, c := float32(math.Sin(float64(angle))), float32(math.Cos(float64(angle)))
k := 1 - c
return Mat4{x*x*k + c, x*y*k + z*s, x*z*k - y*s, 0, x*y*k - z*s, y*y*k + c, y*z*k + x*s, 0, x*z*k + y*s, y*z*k - x*s, z*z*k + c, 0, 0, 0, 0, 1}
}
// Extracts the 3d scaling from a homogeneous matrix
func Extract3DScale(m Mat4) (x, y, z float32) {
return float32(math.Sqrt(float64(m[0]*m[0] + m[1]*m[1] + m[2]*m[2]))),
float32(math.Sqrt(float64(m[4]*m[4] + m[5]*m[5] + m[6]*m[6]))),
float32(math.Sqrt(float64(m[8]*m[8] + m[9]*m[9] + m[10]*m[10])))
}
// Extracts the maximum scaling from a homogeneous matrix
func ExtractMaxScale(m Mat4) float32 {
scaleX := float64(m[0]*m[0] + m[1]*m[1] + m[2]*m[2])
scaleY := float64(m[4]*m[4] + m[5]*m[5] + m[6]*m[6])
scaleZ := float64(m[8]*m[8] + m[9]*m[9] + m[10]*m[10])
return float32(math.Sqrt(math.Max(scaleX, math.Max(scaleY, scaleZ))))
}
// Calculates the Normal of the Matrix (aka the inverse transpose)
func Mat4Normal(m Mat4) Mat3 {
n := m.Inv().Transpose()
return Mat3{n[0], n[1], n[2], n[4], n[5], n[6], n[8], n[9], n[10]}
}
// Multiplies a 3D vector by a transformation given by
// the homogeneous 4D matrix m, applying any translation.
// If this transformation is non-affine, it will project this
// vector onto the plane w=1 before returning the result.
//
// This is similar to saying you're transforming and projecting a point.
//
// This is effectively equivalent to the GLSL code
// vec4 r = (m * vec4(v,1.));
// r = r/r.w;
// vec3 newV = r.xyz;
func TransformCoordinate(v Vec3, m Mat4) Vec3 {
t := v.Vec4(1)
t = m.Mul4x1(t)
t = t.Mul(1 / t[3])
return t.Vec3()
}
// Multiplies a 3D vector by a transformation given by
// the homogeneous 4D matrix m, NOT applying any translations.
//
// This is similar to saying you're applying a transformation
// to a direction or normal. Rotation still applies (as does scaling),
// but translating a direction or normal is meaningless.
//
// This is effectively equivalent to the GLSL code
// vec4 r = (m * vec4(v,0.));
// vec3 newV = r.xyz
func TransformNormal(v Vec3, m Mat4) Vec3 {
t := v.Vec4(0)
t = m.Mul4x1(t)
return t.Vec3()
}

142
vendor/github.com/go-gl/mathgl/mgl32/util.go generated vendored Normal file
View File

@@ -0,0 +1,142 @@
// Copyright 2014 The go-gl Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run codegen.go -template vector.tmpl -output vector.go
//go:generate go run codegen.go -template matrix.tmpl -output matrix.go
//go:generate go run codegen.go -mgl64
package mgl32
import (
"math"
)
// Epsilon is some tiny value that determines how precisely equal we want our floats to be
// This is exported and left as a variable in case you want to change the default threshold for the
// purposes of certain methods (e.g. Unproject uses the default epsilon when determining
// if the determinant is "close enough" to zero to mean there's no inverse).
//
// This is, obviously, not mutex protected so be **absolutely sure** that no functions using Epsilon
// are being executed when you change this.
var Epsilon float32 = 1e-10
// A direct copy of the math package's Abs. This is here for the mgl32
// package, to prevent rampant type conversions during equality tests.
func Abs(a float32) float32 {
if a < 0 {
return -a
} else if a == 0 {
return 0
}
return a
}
// FloatEqual is a safe utility function to compare floats.
// It's Taken from http://floating-point-gui.de/errors/comparison/
//
// It is slightly altered to not call Abs when not needed.
func FloatEqual(a, b float32) bool {
return FloatEqualThreshold(a, b, Epsilon)
}
// FloatEqualFunc is a utility closure that will generate a function that
// always approximately compares floats like FloatEqualThreshold with a different
// threshold.
func FloatEqualFunc(epsilon float32) func(float32, float32) bool {
return func(a, b float32) bool {
return FloatEqualThreshold(a, b, epsilon)
}
}
var (
MinNormal = float32(1.1754943508222875e-38) // 1 / 2**(127 - 1)
MinValue = float32(math.SmallestNonzeroFloat32)
MaxValue = float32(math.MaxFloat32)
InfPos = float32(math.Inf(1))
InfNeg = float32(math.Inf(-1))
NaN = float32(math.NaN())
)
// FloatEqualThreshold is a utility function to compare floats.
// It's Taken from http://floating-point-gui.de/errors/comparison/
//
// It is slightly altered to not call Abs when not needed.
//
// This differs from FloatEqual in that it lets you pass in your comparison threshold, so that you can adjust the comparison value to your specific needs
func FloatEqualThreshold(a, b, epsilon float32) bool {
if a == b { // Handles the case of inf or shortcuts the loop when no significant error has accumulated
return true
}
diff := Abs(a - b)
if a*b == 0 || diff < MinNormal { // If a or b are 0 or both are extremely close to it
return diff < epsilon*epsilon
}
// Else compare difference
return diff/(Abs(a)+Abs(b)) < epsilon
}
// Clamp takes in a value and two thresholds. If the value is smaller than the low
// threshold, it returns the low threshold. If it's bigger than the high threshold
// it returns the high threshold. Otherwise it returns the value.
//
// Useful to prevent some functions from freaking out because a value was
// teeeeechnically out of range.
func Clamp(a, low, high float32) float32 {
if a < low {
return low
} else if a > high {
return high
}
return a
}
// ClampFunc generates a closure that returns its parameter
// clamped to the range [low,high].
func ClampFunc(low, high float32) func(float32) float32 {
return func(a float32) float32 {
return Clamp(a, low, high)
}
}
/* The IsClamped functions use strict equality (meaning: not the FloatEqual function)
there shouldn't be any major issues with this since clamp is often used to fix minor errors*/
// Checks if a is clamped between low and high as if
// Clamp(a, low, high) had been called.
//
// In most cases it's probably better to just call Clamp
// without checking this since it's relatively cheap.
func IsClamped(a, low, high float32) bool {
return a >= low && a <= high
}
// If a > b, then a will be set to the value of b.
func SetMin(a, b *float32) {
if *b < *a {
*a = *b
}
}
// If a < b, then a will be set to the value of b.
func SetMax(a, b *float32) {
if *a < *b {
*a = *b
}
}
// Round shortens a float32 value to a specified precision (number of digits after the decimal point)
// with "round half up" tie-braking rule. Half-way values (23.5) are always rounded up (24).
func Round(v float32, precision int) float32 {
p := float64(precision)
t := float64(v) * math.Pow(10, p)
if t > 0 {
return float32(math.Floor(t+0.5) / math.Pow(10, p))
}
return float32(math.Ceil(t-0.5) / math.Pow(10, p))
}

350
vendor/github.com/go-gl/mathgl/mgl32/vecn.go generated vendored Normal file
View File

@@ -0,0 +1,350 @@
// Copyright 2014 The go-gl Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mgl32
import (
"math"
)
// A vector of N elements backed by a slice
//
// As with MatMxN, this is not for hardcore linear algebra with large dimensions. Use github.com/gonum/matrix
// or something like BLAS/LAPACK for that. This is for corner cases in 3D math where you require
// something a little bigger that 4D, but still relatively small.
//
// This VecN uses several sync.Pool objects as a memory pool. The rule is that for any sized vector, the backing slice
// has CAPACITY (not length) of 2^p where p is Ceil(log_2(N)) -- or in other words, rounding up the base-2
// log of the size of the vector. E.G. a VecN of size 17 will have a backing slice of Cap 32.
type VecN struct {
vec []float32
}
// Creates a new vector with a backing slice filled with the contents
// of initial. It is NOT backed by initial, but rather a slice with cap
// 2^p where p is Ceil(log_2(len(initial))), with the data from initial copied into
// it.
func NewVecNFromData(initial []float32) *VecN {
if initial == nil {
return &VecN{}
}
var internal []float32
if shouldPool {
internal = grabFromPool(len(initial))
} else {
internal = make([]float32, len(initial))
}
copy(internal, initial)
return &VecN{vec: internal}
}
// Creates a new vector with a backing slice of
// 2^p where p = Ceil(log_2(n))
func NewVecN(n int) *VecN {
if shouldPool {
return &VecN{vec: grabFromPool(n)}
} else {
return &VecN{vec: make([]float32, n)}
}
}
// Returns the raw slice backing the VecN
//
// This may be sent back to the memory pool at any time
// and you aren't advised to rely on this value
func (vn VecN) Raw() []float32 {
return vn.vec
}
// Gets the element at index i from the vector.
// This does not bounds check, and will panic if i is
// out of range.
func (vn VecN) Get(i int) float32 {
return vn.vec[i]
}
func (vn *VecN) Set(i int, val float32) {
vn.vec[i] = val
}
// Sends the allocated memory through the callback if it exists
func (vn *VecN) destroy() {
if vn == nil || vn.vec == nil {
return
}
if shouldPool {
returnToPool(vn.vec)
}
vn.vec = nil
}
// Resizes the underlying slice to the desired amount, reallocating or retrieving from the pool
// if necessary. The values after a Resize cannot be expected to be related to the values before a Resize.
//
// If the caller is a nil pointer, this returns a value as if NewVecN(n) had been called,
// otherwise it simply returns the caller.
func (vn *VecN) Resize(n int) *VecN {
if vn == nil {
return NewVecN(n)
}
if n <= cap(vn.vec) {
if vn.vec != nil {
vn.vec = vn.vec[:n]
} else {
vn.vec = []float32{}
}
return vn
}
if shouldPool && vn.vec != nil {
returnToPool(vn.vec)
}
*vn = (*NewVecN(n))
return vn
}
// Sets the vector's backing slice to the given
// new one.
func (vn *VecN) SetBackingSlice(newSlice []float32) {
vn.vec = newSlice
}
// Return the len of the vector's underlying slice.
// This is not titled Len because it conflicts the package's
// convention of calling the Norm the Len.
func (vn *VecN) Size() int {
return len(vn.vec)
}
// Returns the cap of the vector's underlying slice.
func (vn *VecN) Cap() int {
return cap(vn.vec)
}
// Sets the vector's size to n and zeroes out the vector.
// If n is bigger than the vector's size, it will realloc.
func (vn *VecN) Zero(n int) {
vn.Resize(n)
for i := range vn.vec {
vn.vec[i] = 0
}
}
// Adds vn and addend, storing the result in dst.
// If dst does not have sufficient size it will be resized
// Dst may be one of the other arguments. If dst is nil, it will be allocated.
// The value returned is dst, for easier method chaining
//
// If vn and addend are not the same size, this function will add min(vn.Size(), addend.Size())
// elements.
func (vn *VecN) Add(dst *VecN, subtrahend *VecN) *VecN {
if vn == nil || subtrahend == nil {
return nil
}
size := intMin(len(vn.vec), len(subtrahend.vec))
dst = dst.Resize(size)
for i := 0; i < size; i++ {
dst.vec[i] = vn.vec[i] + subtrahend.vec[i]
}
return dst
}
// Subtracts addend from vn, storing the result in dst.
// If dst does not have sufficient size it will be resized
// Dst may be one of the other arguments. If dst is nil, it will be allocated.
// The value returned is dst, for easier method chaining
//
// If vn and addend are not the same size, this function will add min(vn.Size(), addend.Size())
// elements.
func (vn *VecN) Sub(dst *VecN, addend *VecN) *VecN {
if vn == nil || addend == nil {
return nil
}
size := intMin(len(vn.vec), len(addend.vec))
dst = dst.Resize(size)
for i := 0; i < size; i++ {
dst.vec[i] = vn.vec[i] - addend.vec[i]
}
return dst
}
// Takes the binary cross product of vn and other, and stores it in dst.
// If either vn or other are not of size 3 this function will panic
//
// If dst is not of sufficient size, or is nil, a new slice is allocated.
// Dst is permitted to be one of the other arguments
func (vn *VecN) Cross(dst *VecN, other *VecN) *VecN {
if vn == nil || other == nil {
return nil
}
if len(vn.vec) != 3 || len(other.vec) != 3 {
panic("Cannot take binary cross product of non-3D elements (7D cross product not implemented)")
}
dst = dst.Resize(3)
dst.vec[0], dst.vec[1], dst.vec[2] = vn.vec[1]*other.vec[2]-vn.vec[2]*other.vec[1], vn.vec[2]*other.vec[0]-vn.vec[0]*other.vec[2], vn.vec[0]*other.vec[1]-vn.vec[1]*other.vec[0]
return dst
}
func intMin(a, b int) int {
if a < b {
return a
}
return b
}
// Computes the dot product of two VecNs, if
// the two vectors are not of the same length -- this
// will return NaN.
func (vn *VecN) Dot(other *VecN) float32 {
if vn == nil || other == nil || len(vn.vec) != len(other.vec) {
return float32(math.NaN())
}
var result float32 = 0.0
for i, el := range vn.vec {
result += el * other.vec[i]
}
return result
}
// Computes the vector length (also called the Norm) of the
// vector. Equivalent to math.Sqrt(vn.Dot(vn)) with the appropriate
// type conversions.
//
// If vn is nil, this returns NaN
func (vn *VecN) Len() float32 {
if vn == nil {
return float32(math.NaN())
}
if len(vn.vec) == 0 {
return 0
}
return float32(math.Sqrt(float64(vn.Dot(vn))))
}
// Normalizes the vector and stores the result in dst, which
// will be returned. Dst will be appropraitely resized to the
// size of vn.
//
// The destination can be vn itself and nothing will go wrong.
//
// This is equivalent to vn.Mul(dst, 1/vn.Len())
func (vn *VecN) Normalize(dst *VecN) *VecN {
if vn == nil {
return nil
}
return vn.Mul(dst, 1/vn.Len())
}
// Multiplied the vector by some scalar value and stores the result in dst, which
// will be returned. Dst will be appropraitely resized to the
// size of vn.
//
// The destination can be vn itself and nothing will go wrong.
func (vn *VecN) Mul(dst *VecN, c float32) *VecN {
if vn == nil {
return nil
}
dst = dst.Resize(len(vn.vec))
for i, el := range vn.vec {
dst.vec[i] = el * c
}
return dst
}
// Performs the vector outer product between vn and v2.
// The outer product is like a "reverse" dot product. Where the dot product
// aligns both vectors with the "sized" part facing "inward" (Vec3*Vec3=Mat1x3*Mat3x1=Mat1x1=Scalar).
// The outer product multiplied them with it facing "outward"
// (Vec3*Vec3=Mat3x1*Mat1x3=Mat3x3).
//
// The matrix dst will be Reshaped to the correct size, if vn or v2 are nil,
// this returns nil.
func (vn *VecN) OuterProd(dst *MatMxN, v2 *VecN) *MatMxN {
if vn == nil || v2 == nil {
return nil
}
dst = dst.Reshape(len(vn.vec), len(v2.vec))
for c, el1 := range v2.vec {
for r, el2 := range vn.vec {
dst.Set(r, c, el1*el2)
}
}
return dst
}
func (vn *VecN) ApproxEqual(vn2 *VecN) bool {
if vn == nil || vn2 == nil || len(vn.vec) != len(vn2.vec) {
return false
}
for i, el := range vn.vec {
if !FloatEqual(el, vn2.vec[i]) {
return false
}
}
return true
}
func (vn *VecN) ApproxEqualThreshold(vn2 *VecN, epsilon float32) bool {
if vn == nil || vn2 == nil || len(vn.vec) != len(vn2.vec) {
return false
}
for i, el := range vn.vec {
if !FloatEqualThreshold(el, vn2.vec[i], epsilon) {
return false
}
}
return true
}
func (vn *VecN) ApproxEqualFunc(vn2 *VecN, comp func(float32, float32) bool) bool {
if vn == nil || vn2 == nil || len(vn.vec) != len(vn2.vec) {
return false
}
for i, el := range vn.vec {
if !comp(el, vn2.vec[i]) {
return false
}
}
return true
}
func (vn *VecN) Vec2() Vec2 {
raw := vn.Raw()
return Vec2{raw[0], raw[1]}
}
func (vn *VecN) Vec3() Vec3 {
raw := vn.Raw()
return Vec3{raw[0], raw[1], raw[2]}
}
func (vn *VecN) Vec4() Vec4 {
raw := vn.Raw()
return Vec4{raw[0], raw[1], raw[2], raw[3]}
}

562
vendor/github.com/go-gl/mathgl/mgl32/vector.go generated vendored Normal file
View File

@@ -0,0 +1,562 @@
// Copyright 2014 The go-gl/mathgl Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file is generated by codegen.go; DO NOT EDIT
// Edit vector.tmpl and run "go generate" to make changes.
package mgl32
import (
"golang.org/x/image/math/f32"
"math"
)
type Vec2 f32.Vec2
type Vec3 f32.Vec3
type Vec4 f32.Vec4
func (v Vec2) Vec3(z float32) Vec3 {
return Vec3{v[0], v[1], z}
}
func (v Vec2) Vec4(z, w float32) Vec4 {
return Vec4{v[0], v[1], z, w}
}
func (v Vec3) Vec2() Vec2 {
return Vec2{v[0], v[1]}
}
func (v Vec3) Vec4(w float32) Vec4 {
return Vec4{v[0], v[1], v[2], w}
}
func (v Vec4) Vec2() Vec2 {
return Vec2{v[0], v[1]}
}
func (v Vec4) Vec3() Vec3 {
return Vec3{v[0], v[1], v[2]}
}
// Elem extracts the elements of the vector for direct value assignment.
func (v Vec2) Elem() (x, y float32) {
return v[0], v[1]
}
// Elem extracts the elements of the vector for direct value assignment.
func (v Vec3) Elem() (x, y, z float32) {
return v[0], v[1], v[2]
}
// Elem extracts the elements of the vector for direct value assignment.
func (v Vec4) Elem() (x, y, z, w float32) {
return v[0], v[1], v[2], v[3]
}
// The vector cross product is an operation only defined on 3D vectors. It is equivalent to
// Vec3{v1[1]*v2[2]-v1[2]*v2[1], v1[2]*v2[0]-v1[0]*v2[2], v1[0]*v2[1] - v1[1]*v2[0]}.
// Another interpretation is that it's the vector whose magnitude is |v1||v2|sin(theta)
// where theta is the angle between v1 and v2.
//
// The cross product is most often used for finding surface normals. The cross product of vectors
// will generate a vector that is perpendicular to the plane they form.
//
// Technically, a generalized cross product exists as an "(N-1)ary" operation
// (that is, the 4D cross product requires 3 4D vectors). But the binary
// 3D (and 7D) cross product is the most important. It can be considered
// the area of a parallelogram with sides v1 and v2.
//
// Like the dot product, the cross product is roughly a measure of directionality.
// Two normalized perpendicular vectors will return a vector with a magnitude of
// 1.0 or -1.0 and two parallel vectors will return a vector with magnitude 0.0.
// The cross product is "anticommutative" meaning v1.Cross(v2) = -v2.Cross(v1),
// this property can be useful to know when finding normals,
// as taking the wrong cross product can lead to the opposite normal of the one you want.
func (v1 Vec3) Cross(v2 Vec3) Vec3 {
return Vec3{v1[1]*v2[2] - v1[2]*v2[1], v1[2]*v2[0] - v1[0]*v2[2], v1[0]*v2[1] - v1[1]*v2[0]}
}
// Add performs element-wise addition between two vectors. It is equivalent to iterating
// over every element of v1 and adding the corresponding element of v2 to it.
func (v1 Vec2) Add(v2 Vec2) Vec2 {
return Vec2{v1[0] + v2[0], v1[1] + v2[1]}
}
// Sub performs element-wise subtraction between two vectors. It is equivalent to iterating
// over every element of v1 and subtracting the corresponding element of v2 from it.
func (v1 Vec2) Sub(v2 Vec2) Vec2 {
return Vec2{v1[0] - v2[0], v1[1] - v2[1]}
}
// Mul performs a scalar multiplication between the vector and some constant value
// c. This is equivalent to iterating over every vector element and multiplying by c.
func (v1 Vec2) Mul(c float32) Vec2 {
return Vec2{v1[0] * c, v1[1] * c}
}
// Dot returns the dot product of this vector with another. There are multiple ways
// to describe this value. One is the multiplication of their lengths and cos(theta) where
// theta is the angle between the vectors: v1.v2 = |v1||v2|cos(theta).
//
// The other (and what is actually done) is the sum of the element-wise multiplication of all
// elements. So for instance, two Vec3s would yield v1.x * v2.x + v1.y * v2.y + v1.z * v2.z.
//
// This means that the dot product of a vector and itself is the square of its Len (within
// the bounds of floating points error).
//
// The dot product is roughly a measure of how closely two vectors are to pointing in the same
// direction. If both vectors are normalized, the value will be -1 for opposite pointing,
// one for same pointing, and 0 for perpendicular vectors.
func (v1 Vec2) Dot(v2 Vec2) float32 {
return v1[0]*v2[0] + v1[1]*v2[1]
}
// Len returns the vector's length. Note that this is NOT the dimension of
// the vector (len(v)), but the mathematical length. This is equivalent to the square
// root of the sum of the squares of all elements. E.G. for a Vec2 it's
// math.Hypot(v[0], v[1]).
func (v1 Vec2) Len() float32 {
return float32(math.Hypot(float64(v1[0]), float64(v1[1])))
}
// Normalize normalizes the vector. Normalization is (1/|v|)*v,
// making this equivalent to v.Scale(1/v.Len()). If the len is 0.0,
// this function will return an infinite value for all elements due
// to how floating point division works in Go (n/0.0 = math.Inf(Sign(n))).
//
// Normalization makes a vector's Len become 1.0 (within the margin of floating point error),
// while maintaining its directionality.
//
// (Can be seen here: http://play.golang.org/p/Aaj7SnbqIp )
func (v1 Vec2) Normalize() Vec2 {
l := 1.0 / v1.Len()
return Vec2{v1[0] * l, v1[1] * l}
}
// ApproxEqual takes in a vector and does an element-wise
// approximate float comparison as if FloatEqual had been used
func (v1 Vec2) ApproxEqual(v2 Vec2) bool {
for i := range v1 {
if !FloatEqual(v1[i], v2[i]) {
return false
}
}
return true
}
// ApproxThresholdEq takes in a threshold for comparing two floats, and uses it to do an
// element-wise comparison of the vector to another.
func (v1 Vec2) ApproxEqualThreshold(v2 Vec2, threshold float32) bool {
for i := range v1 {
if !FloatEqualThreshold(v1[i], v2[i], threshold) {
return false
}
}
return true
}
// ApproxFuncEq takes in a func that compares two floats, and uses it to do an element-wise
// comparison of the vector to another. This is intended to be used with FloatEqualFunc
func (v1 Vec2) ApproxFuncEqual(v2 Vec2, eq func(float32, float32) bool) bool {
for i := range v1 {
if !eq(v1[i], v2[i]) {
return false
}
}
return true
}
// This is an element access func, it is equivalent to v[n] where
// n is some valid index. The mappings are XYZW (X=0, Y=1 etc). Benchmarks
// show that this is more or less as fast as direct acces, probably due to
// inlining, so use v[0] or v.X() depending on personal preference.
func (v Vec2) X() float32 {
return v[0]
}
// This is an element access func, it is equivalent to v[n] where
// n is some valid index. The mappings are XYZW (X=0, Y=1 etc). Benchmarks
// show that this is more or less as fast as direct acces, probably due to
// inlining, so use v[0] or v.X() depending on personal preference.
func (v Vec2) Y() float32 {
return v[1]
}
// Does the vector outer product
// of two vectors. The outer product produces an
// 2x2 matrix. E.G. a Vec2 * Vec2 = Mat2.
//
// The outer product can be thought of as the "opposite"
// of the Dot product. The Dot product treats both vectors like matrices
// oriented such that the left one has N columns and the right has N rows.
// So Vec3.Vec3 = Mat1x3*Mat3x1 = Mat1 = Scalar.
//
// The outer product orients it so they're facing "outward": Vec2*Vec3
// = Mat2x1*Mat1x3 = Mat2x3.
func (v1 Vec2) OuterProd2(v2 Vec2) Mat2 {
return Mat2{v1[0] * v2[0], v1[1] * v2[0], v1[0] * v2[1], v1[1] * v2[1]}
}
// Does the vector outer product
// of two vectors. The outer product produces an
// 2x3 matrix. E.G. a Vec2 * Vec3 = Mat2x3.
//
// The outer product can be thought of as the "opposite"
// of the Dot product. The Dot product treats both vectors like matrices
// oriented such that the left one has N columns and the right has N rows.
// So Vec3.Vec3 = Mat1x3*Mat3x1 = Mat1 = Scalar.
//
// The outer product orients it so they're facing "outward": Vec2*Vec3
// = Mat2x1*Mat1x3 = Mat2x3.
func (v1 Vec2) OuterProd3(v2 Vec3) Mat2x3 {
return Mat2x3{v1[0] * v2[0], v1[1] * v2[0], v1[0] * v2[1], v1[1] * v2[1], v1[0] * v2[2], v1[1] * v2[2]}
}
// Does the vector outer product
// of two vectors. The outer product produces an
// 2x4 matrix. E.G. a Vec2 * Vec4 = Mat2x4.
//
// The outer product can be thought of as the "opposite"
// of the Dot product. The Dot product treats both vectors like matrices
// oriented such that the left one has N columns and the right has N rows.
// So Vec3.Vec3 = Mat1x3*Mat3x1 = Mat1 = Scalar.
//
// The outer product orients it so they're facing "outward": Vec2*Vec3
// = Mat2x1*Mat1x3 = Mat2x3.
func (v1 Vec2) OuterProd4(v2 Vec4) Mat2x4 {
return Mat2x4{v1[0] * v2[0], v1[1] * v2[0], v1[0] * v2[1], v1[1] * v2[1], v1[0] * v2[2], v1[1] * v2[2], v1[0] * v2[3], v1[1] * v2[3]}
}
// Add performs element-wise addition between two vectors. It is equivalent to iterating
// over every element of v1 and adding the corresponding element of v2 to it.
func (v1 Vec3) Add(v2 Vec3) Vec3 {
return Vec3{v1[0] + v2[0], v1[1] + v2[1], v1[2] + v2[2]}
}
// Sub performs element-wise subtraction between two vectors. It is equivalent to iterating
// over every element of v1 and subtracting the corresponding element of v2 from it.
func (v1 Vec3) Sub(v2 Vec3) Vec3 {
return Vec3{v1[0] - v2[0], v1[1] - v2[1], v1[2] - v2[2]}
}
// Mul performs a scalar multiplication between the vector and some constant value
// c. This is equivalent to iterating over every vector element and multiplying by c.
func (v1 Vec3) Mul(c float32) Vec3 {
return Vec3{v1[0] * c, v1[1] * c, v1[2] * c}
}
// Dot returns the dot product of this vector with another. There are multiple ways
// to describe this value. One is the multiplication of their lengths and cos(theta) where
// theta is the angle between the vectors: v1.v2 = |v1||v2|cos(theta).
//
// The other (and what is actually done) is the sum of the element-wise multiplication of all
// elements. So for instance, two Vec3s would yield v1.x * v2.x + v1.y * v2.y + v1.z * v2.z.
//
// This means that the dot product of a vector and itself is the square of its Len (within
// the bounds of floating points error).
//
// The dot product is roughly a measure of how closely two vectors are to pointing in the same
// direction. If both vectors are normalized, the value will be -1 for opposite pointing,
// one for same pointing, and 0 for perpendicular vectors.
func (v1 Vec3) Dot(v2 Vec3) float32 {
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]
}
// Len returns the vector's length. Note that this is NOT the dimension of
// the vector (len(v)), but the mathematical length. This is equivalent to the square
// root of the sum of the squares of all elements. E.G. for a Vec2 it's
// math.Hypot(v[0], v[1]).
func (v1 Vec3) Len() float32 {
return float32(math.Sqrt(float64(v1[0]*v1[0] + v1[1]*v1[1] + v1[2]*v1[2])))
}
// Normalize normalizes the vector. Normalization is (1/|v|)*v,
// making this equivalent to v.Scale(1/v.Len()). If the len is 0.0,
// this function will return an infinite value for all elements due
// to how floating point division works in Go (n/0.0 = math.Inf(Sign(n))).
//
// Normalization makes a vector's Len become 1.0 (within the margin of floating point error),
// while maintaining its directionality.
//
// (Can be seen here: http://play.golang.org/p/Aaj7SnbqIp )
func (v1 Vec3) Normalize() Vec3 {
l := 1.0 / v1.Len()
return Vec3{v1[0] * l, v1[1] * l, v1[2] * l}
}
// ApproxEqual takes in a vector and does an element-wise
// approximate float comparison as if FloatEqual had been used
func (v1 Vec3) ApproxEqual(v2 Vec3) bool {
for i := range v1 {
if !FloatEqual(v1[i], v2[i]) {
return false
}
}
return true
}
// ApproxThresholdEq takes in a threshold for comparing two floats, and uses it to do an
// element-wise comparison of the vector to another.
func (v1 Vec3) ApproxEqualThreshold(v2 Vec3, threshold float32) bool {
for i := range v1 {
if !FloatEqualThreshold(v1[i], v2[i], threshold) {
return false
}
}
return true
}
// ApproxFuncEq takes in a func that compares two floats, and uses it to do an element-wise
// comparison of the vector to another. This is intended to be used with FloatEqualFunc
func (v1 Vec3) ApproxFuncEqual(v2 Vec3, eq func(float32, float32) bool) bool {
for i := range v1 {
if !eq(v1[i], v2[i]) {
return false
}
}
return true
}
// This is an element access func, it is equivalent to v[n] where
// n is some valid index. The mappings are XYZW (X=0, Y=1 etc). Benchmarks
// show that this is more or less as fast as direct acces, probably due to
// inlining, so use v[0] or v.X() depending on personal preference.
func (v Vec3) X() float32 {
return v[0]
}
// This is an element access func, it is equivalent to v[n] where
// n is some valid index. The mappings are XYZW (X=0, Y=1 etc). Benchmarks
// show that this is more or less as fast as direct acces, probably due to
// inlining, so use v[0] or v.X() depending on personal preference.
func (v Vec3) Y() float32 {
return v[1]
}
// This is an element access func, it is equivalent to v[n] where
// n is some valid index. The mappings are XYZW (X=0, Y=1 etc). Benchmarks
// show that this is more or less as fast as direct acces, probably due to
// inlining, so use v[0] or v.X() depending on personal preference.
func (v Vec3) Z() float32 {
return v[2]
}
// Does the vector outer product
// of two vectors. The outer product produces an
// 3x2 matrix. E.G. a Vec3 * Vec2 = Mat3x2.
//
// The outer product can be thought of as the "opposite"
// of the Dot product. The Dot product treats both vectors like matrices
// oriented such that the left one has N columns and the right has N rows.
// So Vec3.Vec3 = Mat1x3*Mat3x1 = Mat1 = Scalar.
//
// The outer product orients it so they're facing "outward": Vec2*Vec3
// = Mat2x1*Mat1x3 = Mat2x3.
func (v1 Vec3) OuterProd2(v2 Vec2) Mat3x2 {
return Mat3x2{v1[0] * v2[0], v1[1] * v2[0], v1[2] * v2[0], v1[0] * v2[1], v1[1] * v2[1], v1[2] * v2[1]}
}
// Does the vector outer product
// of two vectors. The outer product produces an
// 3x3 matrix. E.G. a Vec3 * Vec3 = Mat3.
//
// The outer product can be thought of as the "opposite"
// of the Dot product. The Dot product treats both vectors like matrices
// oriented such that the left one has N columns and the right has N rows.
// So Vec3.Vec3 = Mat1x3*Mat3x1 = Mat1 = Scalar.
//
// The outer product orients it so they're facing "outward": Vec2*Vec3
// = Mat2x1*Mat1x3 = Mat2x3.
func (v1 Vec3) OuterProd3(v2 Vec3) Mat3 {
return Mat3{v1[0] * v2[0], v1[1] * v2[0], v1[2] * v2[0], v1[0] * v2[1], v1[1] * v2[1], v1[2] * v2[1], v1[0] * v2[2], v1[1] * v2[2], v1[2] * v2[2]}
}
// Does the vector outer product
// of two vectors. The outer product produces an
// 3x4 matrix. E.G. a Vec3 * Vec4 = Mat3x4.
//
// The outer product can be thought of as the "opposite"
// of the Dot product. The Dot product treats both vectors like matrices
// oriented such that the left one has N columns and the right has N rows.
// So Vec3.Vec3 = Mat1x3*Mat3x1 = Mat1 = Scalar.
//
// The outer product orients it so they're facing "outward": Vec2*Vec3
// = Mat2x1*Mat1x3 = Mat2x3.
func (v1 Vec3) OuterProd4(v2 Vec4) Mat3x4 {
return Mat3x4{v1[0] * v2[0], v1[1] * v2[0], v1[2] * v2[0], v1[0] * v2[1], v1[1] * v2[1], v1[2] * v2[1], v1[0] * v2[2], v1[1] * v2[2], v1[2] * v2[2], v1[0] * v2[3], v1[1] * v2[3], v1[2] * v2[3]}
}
// Add performs element-wise addition between two vectors. It is equivalent to iterating
// over every element of v1 and adding the corresponding element of v2 to it.
func (v1 Vec4) Add(v2 Vec4) Vec4 {
return Vec4{v1[0] + v2[0], v1[1] + v2[1], v1[2] + v2[2], v1[3] + v2[3]}
}
// Sub performs element-wise subtraction between two vectors. It is equivalent to iterating
// over every element of v1 and subtracting the corresponding element of v2 from it.
func (v1 Vec4) Sub(v2 Vec4) Vec4 {
return Vec4{v1[0] - v2[0], v1[1] - v2[1], v1[2] - v2[2], v1[3] - v2[3]}
}
// Mul performs a scalar multiplication between the vector and some constant value
// c. This is equivalent to iterating over every vector element and multiplying by c.
func (v1 Vec4) Mul(c float32) Vec4 {
return Vec4{v1[0] * c, v1[1] * c, v1[2] * c, v1[3] * c}
}
// Dot returns the dot product of this vector with another. There are multiple ways
// to describe this value. One is the multiplication of their lengths and cos(theta) where
// theta is the angle between the vectors: v1.v2 = |v1||v2|cos(theta).
//
// The other (and what is actually done) is the sum of the element-wise multiplication of all
// elements. So for instance, two Vec3s would yield v1.x * v2.x + v1.y * v2.y + v1.z * v2.z.
//
// This means that the dot product of a vector and itself is the square of its Len (within
// the bounds of floating points error).
//
// The dot product is roughly a measure of how closely two vectors are to pointing in the same
// direction. If both vectors are normalized, the value will be -1 for opposite pointing,
// one for same pointing, and 0 for perpendicular vectors.
func (v1 Vec4) Dot(v2 Vec4) float32 {
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2] + v1[3]*v2[3]
}
// Len returns the vector's length. Note that this is NOT the dimension of
// the vector (len(v)), but the mathematical length. This is equivalent to the square
// root of the sum of the squares of all elements. E.G. for a Vec2 it's
// math.Hypot(v[0], v[1]).
func (v1 Vec4) Len() float32 {
return float32(math.Sqrt(float64(v1[0]*v1[0] + v1[1]*v1[1] + v1[2]*v1[2] + v1[3]*v1[3])))
}
// Normalize normalizes the vector. Normalization is (1/|v|)*v,
// making this equivalent to v.Scale(1/v.Len()). If the len is 0.0,
// this function will return an infinite value for all elements due
// to how floating point division works in Go (n/0.0 = math.Inf(Sign(n))).
//
// Normalization makes a vector's Len become 1.0 (within the margin of floating point error),
// while maintaining its directionality.
//
// (Can be seen here: http://play.golang.org/p/Aaj7SnbqIp )
func (v1 Vec4) Normalize() Vec4 {
l := 1.0 / v1.Len()
return Vec4{v1[0] * l, v1[1] * l, v1[2] * l, v1[3] * l}
}
// ApproxEqual takes in a vector and does an element-wise
// approximate float comparison as if FloatEqual had been used
func (v1 Vec4) ApproxEqual(v2 Vec4) bool {
for i := range v1 {
if !FloatEqual(v1[i], v2[i]) {
return false
}
}
return true
}
// ApproxThresholdEq takes in a threshold for comparing two floats, and uses it to do an
// element-wise comparison of the vector to another.
func (v1 Vec4) ApproxEqualThreshold(v2 Vec4, threshold float32) bool {
for i := range v1 {
if !FloatEqualThreshold(v1[i], v2[i], threshold) {
return false
}
}
return true
}
// ApproxFuncEq takes in a func that compares two floats, and uses it to do an element-wise
// comparison of the vector to another. This is intended to be used with FloatEqualFunc
func (v1 Vec4) ApproxFuncEqual(v2 Vec4, eq func(float32, float32) bool) bool {
for i := range v1 {
if !eq(v1[i], v2[i]) {
return false
}
}
return true
}
// This is an element access func, it is equivalent to v[n] where
// n is some valid index. The mappings are XYZW (X=0, Y=1 etc). Benchmarks
// show that this is more or less as fast as direct acces, probably due to
// inlining, so use v[0] or v.X() depending on personal preference.
func (v Vec4) X() float32 {
return v[0]
}
// This is an element access func, it is equivalent to v[n] where
// n is some valid index. The mappings are XYZW (X=0, Y=1 etc). Benchmarks
// show that this is more or less as fast as direct acces, probably due to
// inlining, so use v[0] or v.X() depending on personal preference.
func (v Vec4) Y() float32 {
return v[1]
}
// This is an element access func, it is equivalent to v[n] where
// n is some valid index. The mappings are XYZW (X=0, Y=1 etc). Benchmarks
// show that this is more or less as fast as direct acces, probably due to
// inlining, so use v[0] or v.X() depending on personal preference.
func (v Vec4) Z() float32 {
return v[2]
}
// This is an element access func, it is equivalent to v[n] where
// n is some valid index. The mappings are XYZW (X=0, Y=1 etc). Benchmarks
// show that this is more or less as fast as direct acces, probably due to
// inlining, so use v[0] or v.X() depending on personal preference.
func (v Vec4) W() float32 {
return v[3]
}
// Does the vector outer product
// of two vectors. The outer product produces an
// 4x2 matrix. E.G. a Vec4 * Vec2 = Mat4x2.
//
// The outer product can be thought of as the "opposite"
// of the Dot product. The Dot product treats both vectors like matrices
// oriented such that the left one has N columns and the right has N rows.
// So Vec3.Vec3 = Mat1x3*Mat3x1 = Mat1 = Scalar.
//
// The outer product orients it so they're facing "outward": Vec2*Vec3
// = Mat2x1*Mat1x3 = Mat2x3.
func (v1 Vec4) OuterProd2(v2 Vec2) Mat4x2 {
return Mat4x2{v1[0] * v2[0], v1[1] * v2[0], v1[2] * v2[0], v1[3] * v2[0], v1[0] * v2[1], v1[1] * v2[1], v1[2] * v2[1], v1[3] * v2[1]}
}
// Does the vector outer product
// of two vectors. The outer product produces an
// 4x3 matrix. E.G. a Vec4 * Vec3 = Mat4x3.
//
// The outer product can be thought of as the "opposite"
// of the Dot product. The Dot product treats both vectors like matrices
// oriented such that the left one has N columns and the right has N rows.
// So Vec3.Vec3 = Mat1x3*Mat3x1 = Mat1 = Scalar.
//
// The outer product orients it so they're facing "outward": Vec2*Vec3
// = Mat2x1*Mat1x3 = Mat2x3.
func (v1 Vec4) OuterProd3(v2 Vec3) Mat4x3 {
return Mat4x3{v1[0] * v2[0], v1[1] * v2[0], v1[2] * v2[0], v1[3] * v2[0], v1[0] * v2[1], v1[1] * v2[1], v1[2] * v2[1], v1[3] * v2[1], v1[0] * v2[2], v1[1] * v2[2], v1[2] * v2[2], v1[3] * v2[2]}
}
// Does the vector outer product
// of two vectors. The outer product produces an
// 4x4 matrix. E.G. a Vec4 * Vec4 = Mat4.
//
// The outer product can be thought of as the "opposite"
// of the Dot product. The Dot product treats both vectors like matrices
// oriented such that the left one has N columns and the right has N rows.
// So Vec3.Vec3 = Mat1x3*Mat3x1 = Mat1 = Scalar.
//
// The outer product orients it so they're facing "outward": Vec2*Vec3
// = Mat2x1*Mat1x3 = Mat2x3.
func (v1 Vec4) OuterProd4(v2 Vec4) Mat4 {
return Mat4{v1[0] * v2[0], v1[1] * v2[0], v1[2] * v2[0], v1[3] * v2[0], v1[0] * v2[1], v1[1] * v2[1], v1[2] * v2[1], v1[3] * v2[1], v1[0] * v2[2], v1[1] * v2[2], v1[2] * v2[2], v1[3] * v2[2], v1[0] * v2[3], v1[1] * v2[3], v1[2] * v2[3], v1[3] * v2[3]}
}

207
vendor/github.com/go-gl/mathgl/mgl32/vector.tmpl generated vendored Normal file
View File

@@ -0,0 +1,207 @@
// Copyright 2014 The go-gl/mathgl Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// <<.Comment>>
// Edit <<.TemplateName>> and run "go generate" to make changes.
package mgl32
import (
"golang.org/x/image/math/f32"
"math"
)
type Vec2 f32.Vec2
type Vec3 f32.Vec3
type Vec4 f32.Vec4
func (v Vec2) Vec3(z float32) Vec3 {
return Vec3{v[0], v[1], z}
}
func (v Vec2) Vec4(z, w float32) Vec4 {
return Vec4{v[0], v[1], z, w}
}
func (v Vec3) Vec2() Vec2 {
return Vec2{v[0], v[1]}
}
func (v Vec3) Vec4(w float32) Vec4 {
return Vec4{v[0], v[1], v[2], w}
}
func (v Vec4) Vec2() Vec2 {
return Vec2{v[0], v[1]}
}
func (v Vec4) Vec3() Vec3 {
return Vec3{v[0], v[1], v[2]}
}
// Elem extracts the elements of the vector for direct value assignment.
func (v Vec2) Elem() (x, y float32) {
return v[0], v[1]
}
// Elem extracts the elements of the vector for direct value assignment.
func (v Vec3) Elem() (x, y, z float32) {
return v[0], v[1], v[2]
}
// Elem extracts the elements of the vector for direct value assignment.
func (v Vec4) Elem() (x, y, z, w float32) {
return v[0], v[1], v[2], v[3]
}
// The vector cross product is an operation only defined on 3D vectors. It is equivalent to
// Vec3{v1[1]*v2[2]-v1[2]*v2[1], v1[2]*v2[0]-v1[0]*v2[2], v1[0]*v2[1] - v1[1]*v2[0]}.
// Another interpretation is that it's the vector whose magnitude is |v1||v2|sin(theta)
// where theta is the angle between v1 and v2.
//
// The cross product is most often used for finding surface normals. The cross product of vectors
// will generate a vector that is perpendicular to the plane they form.
//
// Technically, a generalized cross product exists as an "(N-1)ary" operation
// (that is, the 4D cross product requires 3 4D vectors). But the binary
// 3D (and 7D) cross product is the most important. It can be considered
// the area of a parallelogram with sides v1 and v2.
//
// Like the dot product, the cross product is roughly a measure of directionality.
// Two normalized perpendicular vectors will return a vector with a magnitude of
// 1.0 or -1.0 and two parallel vectors will return a vector with magnitude 0.0.
// The cross product is "anticommutative" meaning v1.Cross(v2) = -v2.Cross(v1),
// this property can be useful to know when finding normals,
// as taking the wrong cross product can lead to the opposite normal of the one you want.
func (v1 Vec3) Cross(v2 Vec3) Vec3 {
return Vec3{v1[1]*v2[2] - v1[2]*v2[1], v1[2]*v2[0] - v1[0]*v2[2], v1[0]*v2[1] - v1[1]*v2[0]}
}
<</* Common functions for all vectors */>>
<<range $m := enum 2 3 4>>
<<$type := typename $m 1>>
// Add performs element-wise addition between two vectors. It is equivalent to iterating
// over every element of v1 and adding the corresponding element of v2 to it.
func (v1 <<$type>>) Add(v2 <<$type>>) <<$type>> {
return <<$type>>{<<range $i := iter 0 $m>> v1[<<$i>>] + v2[<<$i>>], <<end>>}
}
// Sub performs element-wise subtraction between two vectors. It is equivalent to iterating
// over every element of v1 and subtracting the corresponding element of v2 from it.
func (v1 <<$type>>) Sub(v2 <<$type>>) <<$type>> {
return <<$type>>{<<range $i := iter 0 $m>> v1[<<$i>>] - v2[<<$i>>], <<end>>}
}
// Mul performs a scalar multiplication between the vector and some constant value
// c. This is equivalent to iterating over every vector element and multiplying by c.
func (v1 <<$type>>) Mul(c float32) <<$type>> {
return <<$type>>{<<range $i := iter 0 $m>> v1[<<$i>>] * c, <<end>>}
}
// Dot returns the dot product of this vector with another. There are multiple ways
// to describe this value. One is the multiplication of their lengths and cos(theta) where
// theta is the angle between the vectors: v1.v2 = |v1||v2|cos(theta).
//
// The other (and what is actually done) is the sum of the element-wise multiplication of all
// elements. So for instance, two Vec3s would yield v1.x * v2.x + v1.y * v2.y + v1.z * v2.z.
//
// This means that the dot product of a vector and itself is the square of its Len (within
// the bounds of floating points error).
//
// The dot product is roughly a measure of how closely two vectors are to pointing in the same
// direction. If both vectors are normalized, the value will be -1 for opposite pointing,
// one for same pointing, and 0 for perpendicular vectors.
func (v1 <<$type>>) Dot(v2 <<$type>>) float32 {
return <<range $i := iter 0 $m>><<sep "+" $i>> v1[<<$i>>]*v2[<<$i>>] <<end>>
}
// Len returns the vector's length. Note that this is NOT the dimension of
// the vector (len(v)), but the mathematical length. This is equivalent to the square
// root of the sum of the squares of all elements. E.G. for a Vec2 it's
// math.Hypot(v[0], v[1]).
func (v1 <<$type>>) Len() float32 {
<<if eq $m 2 >>
return float32(math.Hypot(float64(v1[0]), float64(v1[1])))
<<else>>
return float32(math.Sqrt(float64(<<repeat $m "v1[%d]*v1[%d]" "+">>)))
<<end>>
}
// Normalize normalizes the vector. Normalization is (1/|v|)*v,
// making this equivalent to v.Scale(1/v.Len()). If the len is 0.0,
// this function will return an infinite value for all elements due
// to how floating point division works in Go (n/0.0 = math.Inf(Sign(n))).
//
// Normalization makes a vector's Len become 1.0 (within the margin of floating point error),
// while maintaining its directionality.
//
// (Can be seen here: http://play.golang.org/p/Aaj7SnbqIp )
func (v1 <<$type>>) Normalize() <<$type>> {
l := 1.0 / v1.Len()
return <<$type>>{<<range $i := iter 0 $m>>v1[<<$i>>] * l,<<end>>}
}
// ApproxEqual takes in a vector and does an element-wise
// approximate float comparison as if FloatEqual had been used
func (v1 <<$type>>) ApproxEqual(v2 <<$type>>) bool {
for i := range v1 {
if !FloatEqual(v1[i], v2[i]) {
return false
}
}
return true
}
// ApproxThresholdEq takes in a threshold for comparing two floats, and uses it to do an
// element-wise comparison of the vector to another.
func (v1 <<$type>>) ApproxEqualThreshold(v2 <<$type>>, threshold float32) bool {
for i := range v1 {
if !FloatEqualThreshold(v1[i], v2[i], threshold) {
return false
}
}
return true
}
// ApproxFuncEq takes in a func that compares two floats, and uses it to do an element-wise
// comparison of the vector to another. This is intended to be used with FloatEqualFunc
func (v1 <<$type>>) ApproxFuncEqual(v2 <<$type>>, eq func(float32, float32) bool) bool {
for i := range v1 {
if !eq(v1[i], v2[i]) {
return false
}
}
return true
}
<<range $i := iter 0 $m>>
// This is an element access func, it is equivalent to v[n] where
// n is some valid index. The mappings are XYZW (X=0, Y=1 etc). Benchmarks
// show that this is more or less as fast as direct acces, probably due to
// inlining, so use v[0] or v.X() depending on personal preference.
func (v <<$type>>) <<elementname $i>>() float32 {
return v[<<$i>>]
}
<<end>>
<<range $n := enum 2 3 4>>
// Does the vector outer product
// of two vectors. The outer product produces an
// <<$m>>x<<$n>> matrix. E.G. a Vec<<$m>> * Vec<<$n>> = <<typename $m $n>>.
//
// The outer product can be thought of as the "opposite"
// of the Dot product. The Dot product treats both vectors like matrices
// oriented such that the left one has N columns and the right has N rows.
// So Vec3.Vec3 = Mat1x3*Mat3x1 = Mat1 = Scalar.
//
// The outer product orients it so they're facing "outward": Vec2*Vec3
// = Mat2x1*Mat1x3 = Mat2x3.
func (v1 <<$type>>) OuterProd<<$n>>(v2 <<typename $n 1>>) <<typename $m $n>> {
return <<typename $m $n>>{<<range $i := matiter $m $n>>v1[<<$i.M>>] * v2[<<$i.N>>], <<end>>}
}
<<end>>
<<end>> <</* range $m */>>