dep -> govendor

This commit is contained in:
2018-03-18 05:53:01 +00:00
parent 93fb27403b
commit 88acc05085
1033 changed files with 754817 additions and 113 deletions

248
vendor/github.com/faiface/pixel/text/atlas.go generated vendored Normal file
View File

@@ -0,0 +1,248 @@
package text
import (
"fmt"
"image"
"image/draw"
"sort"
"unicode"
"github.com/faiface/pixel"
"golang.org/x/image/font"
"golang.org/x/image/math/fixed"
)
// Atlas7x13 is an Atlas using basicfont.Face7x13 with the ASCII rune set
var Atlas7x13 *Atlas
// Glyph describes one glyph in an Atlas.
type Glyph struct {
Dot pixel.Vec
Frame pixel.Rect
Advance float64
}
// Atlas is a set of pre-drawn glyphs of a fixed set of runes. This allows for efficient text drawing.
type Atlas struct {
face font.Face
pic pixel.Picture
mapping map[rune]Glyph
ascent float64
descent float64
lineHeight float64
}
// NewAtlas creates a new Atlas containing glyphs of the union of the given sets of runes (plus
// unicode.ReplacementChar) from the given font face.
//
// Creating an Atlas is rather expensive, do not create a new Atlas each frame.
//
// Do not destroy or close the font.Face after creating the Atlas. Atlas still uses it.
func NewAtlas(face font.Face, runeSets ...[]rune) *Atlas {
seen := make(map[rune]bool)
runes := []rune{unicode.ReplacementChar}
for _, set := range runeSets {
for _, r := range set {
if !seen[r] {
runes = append(runes, r)
seen[r] = true
}
}
}
fixedMapping, fixedBounds := makeSquareMapping(face, runes, fixed.I(2))
atlasImg := image.NewRGBA(image.Rect(
fixedBounds.Min.X.Floor(),
fixedBounds.Min.Y.Floor(),
fixedBounds.Max.X.Ceil(),
fixedBounds.Max.Y.Ceil(),
))
for r, fg := range fixedMapping {
dr, mask, maskp, _, _ := face.Glyph(fg.dot, r)
draw.Draw(atlasImg, dr, mask, maskp, draw.Src)
}
bounds := pixel.R(
i2f(fixedBounds.Min.X),
i2f(fixedBounds.Min.Y),
i2f(fixedBounds.Max.X),
i2f(fixedBounds.Max.Y),
)
mapping := make(map[rune]Glyph)
for r, fg := range fixedMapping {
mapping[r] = Glyph{
Dot: pixel.V(
i2f(fg.dot.X),
bounds.Max.Y-(i2f(fg.dot.Y)-bounds.Min.Y),
),
Frame: pixel.R(
i2f(fg.frame.Min.X),
bounds.Max.Y-(i2f(fg.frame.Min.Y)-bounds.Min.Y),
i2f(fg.frame.Max.X),
bounds.Max.Y-(i2f(fg.frame.Max.Y)-bounds.Min.Y),
).Norm(),
Advance: i2f(fg.advance),
}
}
return &Atlas{
face: face,
pic: pixel.PictureDataFromImage(atlasImg),
mapping: mapping,
ascent: i2f(face.Metrics().Ascent),
descent: i2f(face.Metrics().Descent),
lineHeight: i2f(face.Metrics().Height),
}
}
// Picture returns the underlying Picture containing an arrangement of all the glyphs contained
// within the Atlas.
func (a *Atlas) Picture() pixel.Picture {
return a.pic
}
// Contains reports wheter r in contained within the Atlas.
func (a *Atlas) Contains(r rune) bool {
_, ok := a.mapping[r]
return ok
}
// Glyph returns the description of r within the Atlas.
func (a *Atlas) Glyph(r rune) Glyph {
return a.mapping[r]
}
// Kern returns the kerning distance between runes r0 and r1. Positive distance means that the
// glyphs should be further apart.
func (a *Atlas) Kern(r0, r1 rune) float64 {
return i2f(a.face.Kern(r0, r1))
}
// Ascent returns the distance from the top of the line to the baseline.
func (a *Atlas) Ascent() float64 {
return a.ascent
}
// Descent returns the distance from the baseline to the bottom of the line.
func (a *Atlas) Descent() float64 {
return a.descent
}
// LineHeight returns the recommended vertical distance between two lines of text.
func (a *Atlas) LineHeight() float64 {
return a.lineHeight
}
// DrawRune returns parameters necessary for drawing a rune glyph.
//
// Rect is a rectangle where the glyph should be positioned. Frame is the glyph frame inside the
// Atlas's Picture. NewDot is the new position of the dot.
func (a *Atlas) DrawRune(prevR, r rune, dot pixel.Vec) (rect, frame, bounds pixel.Rect, newDot pixel.Vec) {
if !a.Contains(r) {
r = unicode.ReplacementChar
}
if !a.Contains(unicode.ReplacementChar) {
return pixel.Rect{}, pixel.Rect{}, pixel.Rect{}, dot
}
if !a.Contains(prevR) {
prevR = unicode.ReplacementChar
}
if prevR >= 0 {
dot.X += a.Kern(prevR, r)
}
glyph := a.Glyph(r)
rect = glyph.Frame.Moved(dot.Sub(glyph.Dot))
bounds = rect
if bounds.W()*bounds.H() != 0 {
bounds = pixel.R(
bounds.Min.X,
dot.Y-a.Descent(),
bounds.Max.X,
dot.Y+a.Ascent(),
)
}
dot.X += glyph.Advance
return rect, glyph.Frame, bounds, dot
}
type fixedGlyph struct {
dot fixed.Point26_6
frame fixed.Rectangle26_6
advance fixed.Int26_6
}
// makeSquareMapping finds an optimal glyph arrangement of the given runes, so that their common
// bounding box is as square as possible.
func makeSquareMapping(face font.Face, runes []rune, padding fixed.Int26_6) (map[rune]fixedGlyph, fixed.Rectangle26_6) {
width := sort.Search(int(fixed.I(1024*1024)), func(i int) bool {
width := fixed.Int26_6(i)
_, bounds := makeMapping(face, runes, padding, width)
return bounds.Max.X-bounds.Min.X >= bounds.Max.Y-bounds.Min.Y
})
return makeMapping(face, runes, padding, fixed.Int26_6(width))
}
// makeMapping arranges glyphs of the given runes into rows in such a way, that no glyph is located
// fully to the right of the specified width. Specifically, it places glyphs in a row one by one and
// once it reaches the specified width, it starts a new row.
func makeMapping(face font.Face, runes []rune, padding, width fixed.Int26_6) (map[rune]fixedGlyph, fixed.Rectangle26_6) {
mapping := make(map[rune]fixedGlyph)
bounds := fixed.Rectangle26_6{}
dot := fixed.P(0, 0)
for _, r := range runes {
b, advance, ok := face.GlyphBounds(r)
if !ok {
fmt.Println(r)
continue
}
// this is important for drawing, artifacts arise otherwise
frame := fixed.Rectangle26_6{
Min: fixed.P(b.Min.X.Floor(), b.Min.Y.Floor()),
Max: fixed.P(b.Max.X.Ceil(), b.Max.Y.Ceil()),
}
dot.X -= frame.Min.X
frame = frame.Add(dot)
mapping[r] = fixedGlyph{
dot: dot,
frame: frame,
advance: advance,
}
bounds = bounds.Union(frame)
dot.X = frame.Max.X
// padding + align to integer
dot.X += padding
dot.X = fixed.I(dot.X.Ceil())
// width exceeded, new row
if frame.Max.X >= width {
dot.X = 0
dot.Y += face.Metrics().Ascent + face.Metrics().Descent
// padding + align to integer
dot.Y += padding
dot.Y = fixed.I(dot.Y.Ceil())
}
}
return mapping, bounds
}
func i2f(i fixed.Int26_6) float64 {
return float64(i) / (1 << 6)
}

2
vendor/github.com/faiface/pixel/text/doc.go generated vendored Normal file
View File

@@ -0,0 +1,2 @@
// Package text implements efficient text drawing for the Pixel library.
package text

347
vendor/github.com/faiface/pixel/text/text.go generated vendored Normal file
View File

@@ -0,0 +1,347 @@
package text
import (
"image/color"
"math"
"unicode"
"unicode/utf8"
"github.com/faiface/pixel"
"golang.org/x/image/font/basicfont"
)
// ASCII is a set of all ASCII runes. These runes are codepoints from 32 to 127 inclusive.
var ASCII []rune
func init() {
ASCII = make([]rune, unicode.MaxASCII-32)
for i := range ASCII {
ASCII[i] = rune(32 + i)
}
Atlas7x13 = NewAtlas(basicfont.Face7x13, ASCII)
}
// RangeTable takes a *unicode.RangeTable and generates a set of runes contained within that
// RangeTable.
func RangeTable(table *unicode.RangeTable) []rune {
var runes []rune
for _, rng := range table.R16 {
for r := rng.Lo; r <= rng.Hi; r += rng.Stride {
runes = append(runes, rune(r))
}
}
for _, rng := range table.R32 {
for r := rng.Lo; r <= rng.Hi; r += rng.Stride {
runes = append(runes, rune(r))
}
}
return runes
}
// Text allows for effiecient and convenient text drawing.
//
// To create a Text object, use the New constructor:
// txt := text.New(pixel.ZV, text.NewAtlas(face, text.ASCII))
//
// As suggested by the constructor, a Text object is always associated with one font face and a
// fixed set of runes. For example, the Text we created above can draw text using the font face
// contained in the face variable and is capable of drawing ASCII characters.
//
// Here we create a Text object which can draw ASCII and Katakana characters:
// txt := text.New(0, text.NewAtlas(face, text.ASCII, text.RangeTable(unicode.Katakana)))
//
// Similarly to IMDraw, Text functions as a buffer. It implements io.Writer interface, so writing
// text to it is really simple:
// fmt.Print(txt, "Hello, world!")
//
// Newlines, tabs and carriage returns are supported.
//
// Finally, if we want the written text to show up on some other Target, we can draw it:
// txt.Draw(target)
//
// Text exports two important fields: Orig and Dot. Dot is the position where the next character
// will be written. Dot is automatically moved when writing to a Text object, but you can also
// manipulate it manually. Orig specifies the text origin, usually the top-left dot position. Dot is
// always aligned to Orig when writing newlines. The Clear method resets the Dot to Orig.
type Text struct {
// Orig specifies the text origin, usually the top-left dot position. Dot is always aligned
// to Orig when writing newlines.
Orig pixel.Vec
// Dot is the position where the next character will be written. Dot is automatically moved
// when writing to a Text object, but you can also manipulate it manually
Dot pixel.Vec
// Color is the color of the text that is to be written. Defaults to white.
Color color.Color
// LineHeight is the vertical distance between two lines of text.
//
// Example:
// txt.LineHeight = 1.5 * txt.Atlas().LineHeight()
LineHeight float64
// TabWidth is the horizontal tab width. Tab characters will align to the multiples of this
// width.
//
// Example:
// txt.TabWidth = 8 * txt.Atlas().Glyph(' ').Advance
TabWidth float64
atlas *Atlas
buf []byte
prevR rune
bounds pixel.Rect
glyph pixel.TrianglesData
tris pixel.TrianglesData
mat pixel.Matrix
col pixel.RGBA
trans pixel.TrianglesData
transD pixel.Drawer
dirty bool
}
// New creates a new Text capable of drawing runes contained in the provided Atlas. Orig and Dot
// will be initially set to orig.
//
// Here we create a Text capable of drawing ASCII characters using the Go Regular font.
// ttf, err := truetype.Parse(goregular.TTF)
// if err != nil {
// panic(err)
// }
// face := truetype.NewFace(ttf, &truetype.Options{
// Size: 14,
// })
// txt := text.New(orig, text.NewAtlas(face, text.ASCII))
func New(orig pixel.Vec, atlas *Atlas) *Text {
txt := &Text{
Orig: orig,
Dot: orig,
Color: pixel.Alpha(1),
LineHeight: atlas.LineHeight(),
TabWidth: atlas.Glyph(' ').Advance * 4,
atlas: atlas,
mat: pixel.IM,
col: pixel.Alpha(1),
}
txt.glyph.SetLen(6)
for i := range txt.glyph {
txt.glyph[i].Color = pixel.Alpha(1)
txt.glyph[i].Intensity = 1
}
txt.transD.Picture = txt.atlas.pic
txt.transD.Triangles = &txt.trans
txt.Clear()
return txt
}
// Atlas returns the underlying Text's Atlas containing all of the pre-drawn glyphs. The Atlas is
// also useful for getting values such as the recommended line height.
func (txt *Text) Atlas() *Atlas {
return txt.atlas
}
// Bounds returns the bounding box of the text currently written to the Text excluding whitespace.
//
// If the Text is empty, a zero rectangle is returned.
func (txt *Text) Bounds() pixel.Rect {
return txt.bounds
}
// BoundsOf returns the bounding box of s if it was to be written to the Text right now.
func (txt *Text) BoundsOf(s string) pixel.Rect {
dot := txt.Dot
prevR := txt.prevR
bounds := pixel.Rect{}
for _, r := range s {
var control bool
dot, control = txt.controlRune(r, dot)
if control {
continue
}
var b pixel.Rect
_, _, b, dot = txt.Atlas().DrawRune(prevR, r, dot)
if bounds.W()*bounds.H() == 0 {
bounds = b
} else {
bounds = bounds.Union(b)
}
prevR = r
}
return bounds
}
// Clear removes all written text from the Text. The Dot field is reset to Orig.
func (txt *Text) Clear() {
txt.prevR = -1
txt.bounds = pixel.Rect{}
txt.tris.SetLen(0)
txt.dirty = true
txt.Dot = txt.Orig
}
// Write writes a slice of bytes to the Text. This method never fails, always returns len(p), nil.
func (txt *Text) Write(p []byte) (n int, err error) {
txt.buf = append(txt.buf, p...)
txt.drawBuf()
return len(p), nil
}
// WriteString writes a string to the Text. This method never fails, always returns len(s), nil.
func (txt *Text) WriteString(s string) (n int, err error) {
txt.buf = append(txt.buf, s...)
txt.drawBuf()
return len(s), nil
}
// WriteByte writes a byte to the Text. This method never fails, always returns nil.
//
// Writing a multi-byte rune byte-by-byte is perfectly supported.
func (txt *Text) WriteByte(c byte) error {
txt.buf = append(txt.buf, c)
txt.drawBuf()
return nil
}
// WriteRune writes a rune to the Text. This method never fails, always returns utf8.RuneLen(r), nil.
func (txt *Text) WriteRune(r rune) (n int, err error) {
var b [4]byte
n = utf8.EncodeRune(b[:], r)
txt.buf = append(txt.buf, b[:n]...)
txt.drawBuf()
return n, nil
}
// Draw draws all text written to the Text to the provided Target. The text is transformed by the
// provided Matrix.
//
// This method is equivalent to calling DrawColorMask with nil color mask.
//
// If there's a lot of text written to the Text, changing a matrix or a color mask often might hurt
// performance. Consider using your Target's SetMatrix or SetColorMask methods if available.
func (txt *Text) Draw(t pixel.Target, matrix pixel.Matrix) {
txt.DrawColorMask(t, matrix, nil)
}
// DrawColorMask draws all text written to the Text to the provided Target. The text is transformed
// by the provided Matrix and masked by the provided color mask.
//
// If there's a lot of text written to the Text, changing a matrix or a color mask often might hurt
// performance. Consider using your Target's SetMatrix or SetColorMask methods if available.
func (txt *Text) DrawColorMask(t pixel.Target, matrix pixel.Matrix, mask color.Color) {
if matrix != txt.mat {
txt.mat = matrix
txt.dirty = true
}
if mask == nil {
mask = pixel.Alpha(1)
}
rgba := pixel.ToRGBA(mask)
if rgba != txt.col {
txt.col = rgba
txt.dirty = true
}
if txt.dirty {
txt.trans.SetLen(txt.tris.Len())
txt.trans.Update(&txt.tris)
for i := range txt.trans {
txt.trans[i].Position = txt.mat.Project(txt.trans[i].Position)
txt.trans[i].Color = txt.trans[i].Color.Mul(txt.col)
}
txt.transD.Dirty()
txt.dirty = false
}
txt.transD.Draw(t)
}
// controlRune checks if r is a control rune (newline, tab, ...). If it is, a new dot position and
// true is returned. If r is not a control rune, the original dot and false is returned.
func (txt *Text) controlRune(r rune, dot pixel.Vec) (newDot pixel.Vec, control bool) {
switch r {
case '\n':
dot.X = txt.Orig.X
dot.Y -= txt.LineHeight
case '\r':
dot.X = txt.Orig.X
case '\t':
rem := math.Mod(dot.X-txt.Orig.X, txt.TabWidth)
rem = math.Mod(rem, rem+txt.TabWidth)
if rem == 0 {
rem = txt.TabWidth
}
dot.X += rem
default:
return dot, false
}
return dot, true
}
func (txt *Text) drawBuf() {
if !utf8.FullRune(txt.buf) {
return
}
rgba := pixel.ToRGBA(txt.Color)
for i := range txt.glyph {
txt.glyph[i].Color = rgba
}
for utf8.FullRune(txt.buf) {
r, size := utf8.DecodeRune(txt.buf)
txt.buf = txt.buf[size:]
var control bool
txt.Dot, control = txt.controlRune(r, txt.Dot)
if control {
continue
}
var rect, frame, bounds pixel.Rect
rect, frame, bounds, txt.Dot = txt.Atlas().DrawRune(txt.prevR, r, txt.Dot)
txt.prevR = r
rv := [...]pixel.Vec{
{X: rect.Min.X, Y: rect.Min.Y},
{X: rect.Max.X, Y: rect.Min.Y},
{X: rect.Max.X, Y: rect.Max.Y},
{X: rect.Min.X, Y: rect.Max.Y},
}
fv := [...]pixel.Vec{
{X: frame.Min.X, Y: frame.Min.Y},
{X: frame.Max.X, Y: frame.Min.Y},
{X: frame.Max.X, Y: frame.Max.Y},
{X: frame.Min.X, Y: frame.Max.Y},
}
for i, j := range [...]int{0, 1, 2, 0, 2, 3} {
txt.glyph[i].Position = rv[j]
txt.glyph[i].Picture = fv[j]
}
txt.tris = append(txt.tris, txt.glyph...)
txt.dirty = true
if txt.bounds.W()*txt.bounds.H() == 0 {
txt.bounds = bounds
} else {
txt.bounds = txt.bounds.Union(bounds)
}
}
}