package main import ( "flag" "image" "log" "math" "os" "github.com/hajimehoshi/ebiten" "code.ur.gs/lupine/ordoor/internal/assetstore" "code.ur.gs/lupine/ordoor/internal/ui" ) var ( gamePath = flag.String("game-path", "./orig", "Path to a WH40K: Chaos Gate installation") gameMap = flag.String("map", "", "Name of a map, e.g., Chapter01") ) type env struct { assets *assetstore.AssetStore area *assetstore.Map step int state state lastState state } type state struct { zoom float64 origin image.Point zIdx int } func main() { flag.Parse() if *gamePath == "" || *gameMap == "" { flag.Usage() os.Exit(1) } assets, err := assetstore.New(*gamePath) if err != nil { log.Fatalf("Failed to scan root directory %v: %v", *gamePath, err) } area, err := assets.Map(*gameMap) if err != nil { log.Fatalf("Failed to load map %v: %v", *gameMap, err) } state := state{ zoom: 1.0, origin: image.Point{0, 3000}, // FIXME: haxxx } env := &env{ area: area, assets: assets, state: state, lastState: state, } win, err := ui.NewWindow("View Map " + *gameMap) if err != nil { log.Fatal("Couldn't create window: %v", err) } // TODO: click to view cell data win.OnKeyUp(ebiten.KeyLeft, env.changeOrigin(-64, +0)) win.OnKeyUp(ebiten.KeyRight, env.changeOrigin(+64, +0)) win.OnKeyUp(ebiten.KeyUp, env.changeOrigin(+0, -64)) win.OnKeyUp(ebiten.KeyDown, env.changeOrigin(+0, +64)) win.OnMouseWheel(env.changeZoom) for i := 0; i <= 6; i++ { win.OnKeyUp(ebiten.Key1+ebiten.Key(i), env.setZIdx(i)) } if err := win.Run(env.Update, env.Draw); err != nil { log.Fatal(err) } } func (e *env) Update() error { if e.step == 0 || e.lastState != e.state { log.Printf("zoom=%.2f zIdx=%v camPos=%#v", e.state.zoom, e.state.zIdx, e.state.origin) } e.lastState = e.state e.step += 1 return nil } func (e *env) Draw(screen *ebiten.Image) error { // Bounds clipping // http://www.java-gaming.org/index.php?topic=24922.0 // https://stackoverflow.com/questions/892811/drawing-isometric-game-worlds // https://gamedev.stackexchange.com/questions/25896/how-do-i-find-which-isometric-tiles-are-inside-the-cameras-current-view sw, sh := screen.Size() topLeftX, topLeftY := pixToCell( float64(e.state.origin.X), float64(e.state.origin.Y), ) topLeftX -= 1 // Otherwise we miss half a cell on alternate rows on the left bottomRightX, bottomRightY := pixToCell( float64(e.state.origin.X+sw), float64(e.state.origin.Y+sh), ) // X+Y is constant for all tiles in a column // X-Y is constant for all tiles in a row for a := int(topLeftX + topLeftY); a <= int(bottomRightX+bottomRightY); a++ { for b := int(topLeftX - topLeftY); b <= int(bottomRightX-bottomRightY); b++ { if b&1 != a&1 { continue } x := (a + b) / 2 y := (a - b) / 2 if !image.Pt(x, y).In(e.area.Rect) { continue } for z := 0; z <= e.state.zIdx; z++ { e.renderCell(x, y, z, screen) } } } return nil } func (e *env) renderCell(x, y, z int, screen *ebiten.Image) error { images, err := e.area.ImagesForCell(x, y, z) if err != nil { return err } iso := ebiten.GeoM{} iso.Translate(-float64(e.state.origin.X), -float64(e.state.origin.Y)) fx, fy := cellToPix(float64(x), float64(y)) iso.Translate(fx, fy) // Taking the Z index away *seems* to draw the object in the correct place. // FIXME: There are some artifacts, investigate more iso.Translate(0.0, -float64(z*48.0)) // offset for Z index // TODO: iso.Scale(e.state.zoom, e.state.zoom) // apply current zoom factor for _, img := range images { if err := screen.DrawImage(img, &ebiten.DrawImageOptions{GeoM: iso}); err != nil { return err } } return nil } func (e *env) changeOrigin(byX, byY int) func() { return func() { e.state.origin.X += byX e.state.origin.Y += byY } } func (e *env) changeZoom(_, y float64) { // Zoom in and out with the mouse wheel e.state.zoom *= math.Pow(1.2, y) } func (e *env) setZIdx(to int) func() { return func() { e.state.zIdx = to } } const ( cellWidth = 64 cellHeight = 64 ) // Doesn't take the camera or Z level into account func cellToPix(x, y float64) (float64, float64) { return (x - y) * cellWidth, (x + y) * cellHeight / 2.0 } // Doesn't take the camera or Z level into account func pixToCell(x, y float64) (float64, float64) { return y/cellHeight + x/(cellWidth*2.0), y/cellHeight - x/(cellWidth*2.0) }