Files
flexnbd-c/src/serve.c

716 lines
18 KiB
C
Raw Normal View History

#include "serve.h"
#include "nbdtypes.h"
#include "ioutil.h"
#include "util.h"
#include "bitset.h"
#include "control.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <sys/un.h>
#include <fcntl.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/socket.h>
#include <netinet/tcp.h>
static const int block_allocation_resolution = 4096;//128<<10;
static inline void* sockaddr_address_data(struct sockaddr* sockaddr)
{
struct sockaddr_in* in = (struct sockaddr_in*) sockaddr;
struct sockaddr_in6* in6 = (struct sockaddr_in6*) sockaddr;
if (sockaddr->sa_family == AF_INET)
return &in->sin_addr;
if (sockaddr->sa_family == AF_INET6)
return &in6->sin6_addr;
return NULL;
}
static inline void dirty(struct server *serve, off64_t from, int len)
{
if (serve->mirror)
bitset_set_range(serve->mirror->dirty_map, from, len);
}
int server_detect_closed(struct server* serve)
{
int errno_old = errno;
int result = fcntl(serve->server_fd, F_GETFD, 0) < 0;
errno = errno_old;
return result;
}
/**
* So waiting on client->socket is len bytes of data, and we must write it all
* to client->mapped. However while doing do we must consult the bitmap
* client->block_allocation_map, which is a bitmap where one bit represents
* block_allocation_resolution bytes. Where a bit isn't set, there are no
* disc blocks allocated for that portion of the file, and we'd like to keep
* it that way.
*
* If the bitmap shows that every block in our prospective write is already
* allocated, we can proceed as normal and make one call to writeloop.
*
*/
void write_not_zeroes(struct client_params* client, off64_t from, int len)
{
char *map = client->serve->block_allocation_map;
while (len > 0) {
/* so we have to calculate how much of our input to consider
* next based on the bitmap of allocated blocks. This will be
* at a coarser resolution than the actual write, which may
* not fall on a block boundary at either end. So we look up
* how many blocks our write covers, then cut off the start
* and end to get the exact number of bytes.
*/
int first_bit = from/block_allocation_resolution;
int last_bit = (from+len+block_allocation_resolution-1) /
block_allocation_resolution;
int run = bit_run_count(map, first_bit, last_bit-first_bit) *
block_allocation_resolution;
if (run > len)
run = len;
debug("write_not_zeroes: %ld+%d, first_bit=%d, last_bit=%d, run=%d",
from, len, first_bit, last_bit, run);
#define DO_READ(dst, len) CLIENT_ERROR_ON_FAILURE( \
readloop( \
client->socket, \
(dst), \
(len) \
), \
"read failed %ld+%d", from, (len) \
)
if (bit_is_set(map, from/block_allocation_resolution)) {
debug("writing the lot");
/* already allocated, just write it all */
DO_READ(client->mapped + from, run);
dirty(client->serve, from, run);
len -= run;
from += run;
}
else {
char zerobuffer[block_allocation_resolution];
/* not allocated, read in block_allocation_resoution */
while (run > 0) {
char *dst = client->mapped+from;
int bit = from/block_allocation_resolution;
int blockrun = block_allocation_resolution -
(from % block_allocation_resolution);
if (blockrun > run)
blockrun = run;
debug("writing partial: bit=%d, blockrun=%d (run=%d)",
bit, blockrun, run);
DO_READ(zerobuffer, blockrun);
/* This reads the buffer twice in the worst case
* but we're leaning on memcmp failing early
* and memcpy being fast, rather than try to
* hand-optimized something specific.
*/
if (zerobuffer[0] != 0 ||
memcmp(zerobuffer, zerobuffer + 1, blockrun - 1)) {
memcpy(dst, zerobuffer, blockrun);
bit_set(map, bit);
dirty(client->serve, from, blockrun);
debug("non-zero, copied and set bit %d", bit);
/* at this point we could choose to
* short-cut the rest of the write for
* faster I/O but by continuing to do it
* the slow way we preserve as much
* sparseness as possible.
*/
}
else {
debug("all zero, skip write");
}
len -= blockrun;
run -= blockrun;
from += blockrun;
}
}
}
}
/* Returns 1 if *request was filled with a valid request which we should
* try to honour. 0 otherwise. */
int client_read_request( struct client_params * client , struct nbd_request *out_request )
{
struct nbd_request_raw request_raw;
fd_set fds;
FD_ZERO(&fds);
FD_SET(client->socket, &fds);
FD_SET(client->serve->close_signal[0], &fds);
CLIENT_ERROR_ON_FAILURE(select(FD_SETSIZE, &fds, NULL, NULL, NULL),
"select() failed");
if (FD_ISSET(client->serve->close_signal[0], &fds))
return 0;
if (readloop(client->socket, &request_raw, sizeof(request_raw)) == -1) {
if (errno == 0) {
debug("EOF reading request");
return 0; /* neat point to close the socket */
}
else {
CLIENT_ERROR_ON_FAILURE(-1, "Error reading request");
}
}
nbd_r2h_request( &request_raw, out_request );
return 1;
}
/* Writes a reply to request *request, with error, to the client's
* socket.
* Returns 1; we don't check for errors on the write.
* TODO: Check for errors on the write.
*/
int client_write_reply( struct client_params * client, struct nbd_request *request, int error )
{
struct nbd_reply reply;
struct nbd_reply_raw reply_raw;
reply.magic = REPLY_MAGIC;
reply.error = error;
memcpy( reply.handle, &request->handle, 8 );
nbd_h2r_reply( &reply, &reply_raw );
write( client->socket, &reply_raw, sizeof( reply_raw ) );
return 1;
}
void client_write_init( struct client_params * client, uint64_t size )
{
struct nbd_init init;
struct nbd_init_raw init_raw;
memcpy( init.passwd, INIT_PASSWD, sizeof( INIT_PASSWD ) );
init.magic = INIT_MAGIC;
init.size = size;
memset( init.reserved, 0, 128 );
nbd_h2r_init( &init, &init_raw );
CLIENT_ERROR_ON_FAILURE(
writeloop(client->socket, &init_raw, sizeof(init_raw)),
"Couldn't send hello"
);
}
/* Check to see if the client's request needs a reply constructing.
* Returns 1 if we do, 0 otherwise.
* request_err is set to 0 if the client sent a bad request, in which
* case we send an error reply.
*/
int client_request_needs_reply( struct client_params * client, struct nbd_request request, int *request_err )
{
debug("request type %d", request.type);
if (request.magic != REQUEST_MAGIC)
CLIENT_ERROR("Bad magic %08x", request.magic);
switch (request.type)
{
case REQUEST_READ:
break;
case REQUEST_WRITE:
/* check it's not out of range */
if (request.from < 0 ||
request.from+request.len > client->serve->size) {
debug("request read %ld+%d out of range",
request.from,
request.len
);
client_write_reply( client, &request, 1 );
*request_err = 0;
return 0;
}
break;
case REQUEST_DISCONNECT:
debug("request disconnect");
*request_err = 1;
return 0;
default:
CLIENT_ERROR("Unknown request %08x", request.type);
}
return 1;
}
void client_reply_to_read( struct client_params* client, struct nbd_request request )
{
off64_t offset;
debug("request read %ld+%d", request.from, request.len);
client_write_reply( client, &request, 0);
offset = request.from;
CLIENT_ERROR_ON_FAILURE(
sendfileloop(
client->socket,
client->fileno,
&offset,
request.len),
"sendfile failed from=%ld, len=%d",
offset,
request.len);
}
void client_reply_to_write( struct client_params* client, struct nbd_request request )
{
debug("request write %ld+%d", request.from, request.len);
if (client->serve->block_allocation_map) {
write_not_zeroes( client, request.from, request.len );
}
else {
CLIENT_ERROR_ON_FAILURE(
readloop(
client->socket,
client->mapped + request.from,
request.len),
"read failed from=%ld, len=%d",
request.from,
request.len );
dirty(client->serve, request.from, request.len);
}
if (1) /* not sure whether this is necessary... */
{
/* multiple of 4K page size */
uint64_t from_rounded = request.from & (!0xfff);
uint64_t len_rounded = request.len + (request.from - from_rounded);
CLIENT_ERROR_ON_FAILURE(
msync(
client->mapped + from_rounded,
len_rounded,
MS_SYNC),
"msync failed %ld %ld", request.from, request.len
);
}
client_write_reply( client, &request, 0);
}
void client_reply( struct client_params* client, struct nbd_request request )
{
switch (request.type) {
case REQUEST_READ:
client_reply_to_read( client, request );
break;
case REQUEST_WRITE:
client_reply_to_write( client, request );
break;
}
}
int client_lock_io( struct client_params * client )
{
CLIENT_ERROR_ON_FAILURE(
pthread_mutex_lock(&client->serve->l_io),
"Problem with I/O lock"
);
if (server_detect_closed(client->serve)) {
CLIENT_ERROR_ON_FAILURE(
pthread_mutex_unlock(&client->serve->l_io),
"Problem with I/O unlock"
);
return 0;
}
return 1;
}
void client_unlock_io( struct client_params * client )
{
CLIENT_ERROR_ON_FAILURE(
pthread_mutex_unlock(&client->serve->l_io),
"Problem with I/O unlock"
);
}
int client_serve_request(struct client_params* client)
{
struct nbd_request request;
int request_err;
if ( !client_read_request( client, &request ) ) { return 1; }
if ( !client_request_needs_reply( client, request, &request_err ) ) {
return request_err;
}
if ( client_lock_io( client ) ){
client_reply( client, request );
client_unlock_io( client );
} else {
return 1;
}
return 0;
}
void client_send_hello(struct client_params* client)
{
client_write_init( client, client->serve->size );
}
void* client_serve(void* client_uncast)
{
struct client_params* client = (struct client_params*) client_uncast;
//client_open_file(client);
CLIENT_ERROR_ON_FAILURE(
open_and_mmap(
client->serve->filename,
&client->fileno,
NULL,
(void**) &client->mapped
),
"Couldn't open/mmap file %s", client->serve->filename
);
client_send_hello(client);
while (client_serve_request(client) == 0)
;
CLIENT_ERROR_ON_FAILURE(
close(client->socket),
"Couldn't close socket %d",
client->socket
);
close(client->socket);
close(client->fileno);
munmap(client->mapped, client->serve->size);
free(client);
return NULL;
}
static int testmasks[9] = { 0,128,192,224,240,248,252,254,255 };
/** Test whether AF_INET or AF_INET6 sockaddr is included in the given access
* control list, returning 1 if it is, and 0 if not.
*/
int is_included_in_acl(int list_length, struct ip_and_mask (*list)[], union mysockaddr* test)
{
int i;
for (i=0; i < list_length; i++) {
struct ip_and_mask *entry = &(*list)[i];
int testbits;
unsigned char *raw_address1, *raw_address2;
debug("checking acl entry %d (%d/%d)", i, test->generic.sa_family, entry->ip.family);
if (test->generic.sa_family != entry->ip.family)
continue;
if (test->generic.sa_family == AF_INET) {
debug("it's an AF_INET");
raw_address1 = (unsigned char*) &test->v4.sin_addr;
raw_address2 = (unsigned char*) &entry->ip.v4.sin_addr;
}
else if (test->generic.sa_family == AF_INET6) {
debug("it's an AF_INET6");
raw_address1 = (unsigned char*) &test->v6.sin6_addr;
raw_address2 = (unsigned char*) &entry->ip.v6.sin6_addr;
}
debug("testbits=%d", entry->mask);
for (testbits = entry->mask; testbits > 0; testbits -= 8) {
debug("testbits=%d, c1=%02x, c2=%02x", testbits, raw_address1[0], raw_address2[0]);
if (testbits >= 8) {
if (raw_address1[0] != raw_address2[0])
goto no_match;
}
else {
if ((raw_address1[0] & testmasks[testbits%8]) !=
(raw_address2[0] & testmasks[testbits%8]) )
goto no_match;
}
raw_address1++;
raw_address2++;
}
return 1;
no_match: ;
debug("no match");
}
return 0;
}
/** Prepares a listening socket for the NBD server, binding etc. */
void serve_open_server_socket(struct server* params)
{
int optval=1;
params->server_fd= socket(params->bind_to.generic.sa_family == AF_INET ?
PF_INET : PF_INET6, SOCK_STREAM, 0);
SERVER_ERROR_ON_FAILURE(params->server_fd,
"Couldn't create server socket");
SERVER_ERROR_ON_FAILURE(
setsockopt(params->server_fd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)),
"Couldn't set SO_REUSEADDR"
);
SERVER_ERROR_ON_FAILURE(
setsockopt(params->server_fd, IPPROTO_TCP, TCP_NODELAY, &optval, sizeof(optval)),
"Couldn't set TCP_NODELAY"
);
SERVER_ERROR_ON_FAILURE(
bind(params->server_fd, &params->bind_to.generic,
sizeof(params->bind_to)),
"Couldn't bind server to IP address"
);
SERVER_ERROR_ON_FAILURE(
listen(params->server_fd, params->tcp_backlog),
"Couldn't listen on server socket"
);
}
/** We can only accommodate MAX_NBD_CLIENTS connections at once. This function
* goes through the current list, waits for any threads that have finished
* and returns the next slot free (or -1 if there are none).
*/
int cleanup_and_find_client_slot(struct server* params)
{
int slot=-1, i;
for (i=0; i < MAX_NBD_CLIENTS; i++) {
void* status;
if (params->nbd_client[i].thread != 0) {
char s_client_address[64];
memset(s_client_address, 0, 64);
strcpy(s_client_address, "???");
inet_ntop(
params->nbd_client[i].address.generic.sa_family,
sockaddr_address_data(&params->nbd_client[i].address.generic),
s_client_address,
64
);
if (pthread_tryjoin_np(params->nbd_client[i].thread, &status) < 0) {
if (errno != EBUSY)
SERVER_ERROR_ON_FAILURE(-1, "Problem with joining thread");
}
else {
params->nbd_client[i].thread = 0;
debug("nbd thread %d exited (%s) with status %ld", (int) params->nbd_client[i].thread, s_client_address, (uint64_t)status);
}
}
if (params->nbd_client[i].thread == 0 && slot == -1)
slot = i;
}
return slot;
}
/** Dispatch function for accepting an NBD connection and starting a thread
* to handle it. Rejects the connection if there is an ACL, and the far end's
* address doesn't match, or if there are too many clients already connected.
*/
2012-06-01 16:24:50 +01:00
void accept_nbd_client(
struct server* params,
2012-06-01 16:24:50 +01:00
int client_fd,
union mysockaddr* client_address)
{
struct client_params* client_params;
int slot = cleanup_and_find_client_slot(params);
char s_client_address[64];
int acl_passed = 0;
2012-06-01 16:24:50 +01:00
if (inet_ntop(client_address->generic.sa_family,
sockaddr_address_data(&client_address->generic),
s_client_address, 64) == NULL) {
write(client_fd, "Bad client_address", 18);
close(client_fd);
return;
}
if (params->acl) {
if (is_included_in_acl(params->acl_entries, params->acl, client_address))
acl_passed = 1;
} else {
if (!params->default_deny)
acl_passed = 1;
}
if (!acl_passed) {
write(client_fd, "Access control error", 20);
close(client_fd);
return;
}
if (slot < 0) {
write(client_fd, "Too many clients", 16);
close(client_fd);
return;
}
client_params = xmalloc(sizeof(struct client_params));
client_params->socket = client_fd;
client_params->serve = params;
if (pthread_create(&params->nbd_client[slot].thread, NULL, client_serve, client_params) < 0) {
write(client_fd, "Thread creation problem", 23);
free(client_params);
close(client_fd);
return;
}
memcpy(&params->nbd_client[slot].address, client_address,
sizeof(union mysockaddr));
debug("nbd thread %d started (%s)", (int) params->nbd_client[slot].thread, s_client_address);
}
/** Accept either an NBD or control socket connection, dispatch appropriately */
void serve_accept_loop(struct server* params)
{
while (1) {
int activity_fd, client_fd;
union mysockaddr client_address;
fd_set fds;
socklen_t socklen=sizeof(client_address);
FD_ZERO(&fds);
FD_SET(params->server_fd, &fds);
FD_SET(params->close_signal[0], &fds);
if (params->control_socket_name)
FD_SET(params->control_fd, &fds);
SERVER_ERROR_ON_FAILURE(select(FD_SETSIZE, &fds,
NULL, NULL, NULL), "select() failed");
if (FD_ISSET(params->close_signal[0], &fds))
return;
activity_fd = FD_ISSET(params->server_fd, &fds) ? params->server_fd:
params->control_fd;
client_fd = accept(activity_fd, &client_address.generic, &socklen);
SERVER_ERROR_ON_FAILURE(
pthread_mutex_lock(&params->l_accept),
"Problem with accept lock"
);
if (activity_fd == params->server_fd)
accept_nbd_client(params, client_fd, &client_address);
if (activity_fd == params->control_fd)
accept_control_connection(params, client_fd, &client_address);
SERVER_ERROR_ON_FAILURE(
pthread_mutex_unlock(&params->l_accept),
"Problem with accept unlock"
);
}
}
/** Initialisation function that sets up the initial allocation map, i.e. so
* we know which blocks of the file are allocated.
*/
void serve_init_allocation_map(struct server* params)
{
int fd = open(params->filename, O_RDONLY);
off64_t size;
SERVER_ERROR_ON_FAILURE(fd, "Couldn't open %s", params->filename);
size = lseek64(fd, 0, SEEK_END);
params->size = size;
SERVER_ERROR_ON_FAILURE(size, "Couldn't find size of %s",
params->filename);
params->block_allocation_map =
build_allocation_map(fd, size, block_allocation_resolution);
close(fd);
}
/** Closes sockets, frees memory and waits for all client threads to finish */
void serve_cleanup(struct server* params)
{
int i;
close(params->server_fd);
close(params->control_fd);
if (params->acl)
free(params->acl);
//free(params->filename);
if (params->control_socket_name)
//free(params->control_socket_name);
pthread_mutex_destroy(&params->l_accept);
pthread_mutex_destroy(&params->l_io);
if (params->proxy_fd);
close(params->proxy_fd);
close(params->close_signal[0]);
close(params->close_signal[1]);
free(params->block_allocation_map);
if (params->mirror)
debug("mirror thread running! this should not happen!");
for (i=0; i < MAX_NBD_CLIENTS; i++) {
void* status;
if (params->nbd_client[i].thread != 0) {
debug("joining thread %d", i);
pthread_join(params->nbd_client[i].thread, &status);
}
}
}
/** Full lifecycle of the server */
void do_serve(struct server* params)
{
pthread_mutex_init(&params->l_accept, NULL);
pthread_mutex_init(&params->l_io, NULL);
SERVER_ERROR_ON_FAILURE(pipe(params->close_signal) , "pipe failed");
serve_open_server_socket(params);
serve_open_control_socket(params);
serve_init_allocation_map(params);
serve_accept_loop(params);
serve_cleanup(params);
}