Formatted all code using indent
This commit is contained in:
149
src/server/acl.c
149
src/server/acl.c
@@ -6,103 +6,104 @@
|
||||
#include "acl.h"
|
||||
|
||||
|
||||
struct acl * acl_create( int len, char ** lines, int default_deny )
|
||||
struct acl *acl_create(int len, char **lines, int default_deny)
|
||||
{
|
||||
struct acl * acl;
|
||||
struct acl *acl;
|
||||
|
||||
acl = (struct acl *)xmalloc( sizeof( struct acl ) );
|
||||
acl->len = parse_acl( &acl->entries, len, lines );
|
||||
acl->default_deny = default_deny;
|
||||
return acl;
|
||||
acl = (struct acl *) xmalloc(sizeof(struct acl));
|
||||
acl->len = parse_acl(&acl->entries, len, lines);
|
||||
acl->default_deny = default_deny;
|
||||
return acl;
|
||||
}
|
||||
|
||||
|
||||
static int testmasks[9] = { 0,128,192,224,240,248,252,254,255 };
|
||||
static int testmasks[9] = { 0, 128, 192, 224, 240, 248, 252, 254, 255 };
|
||||
|
||||
/** Test whether AF_INET or AF_INET6 sockaddr is included in the given access
|
||||
* control list, returning 1 if it is, and 0 if not.
|
||||
*/
|
||||
static int is_included_in_acl(int list_length, struct ip_and_mask (*list)[], union mysockaddr* test)
|
||||
static int is_included_in_acl(int list_length,
|
||||
struct ip_and_mask (*list)[],
|
||||
union mysockaddr *test)
|
||||
{
|
||||
NULLCHECK( test );
|
||||
NULLCHECK(test);
|
||||
|
||||
int i;
|
||||
int i;
|
||||
|
||||
for (i=0; i < list_length; i++) {
|
||||
struct ip_and_mask *entry = &(*list)[i];
|
||||
int testbits;
|
||||
unsigned char *raw_address1 = NULL, *raw_address2 = NULL;
|
||||
for (i = 0; i < list_length; i++) {
|
||||
struct ip_and_mask *entry = &(*list)[i];
|
||||
int testbits;
|
||||
unsigned char *raw_address1 = NULL, *raw_address2 = NULL;
|
||||
|
||||
debug("checking acl entry %d (%d/%d)", i, test->generic.sa_family, entry->ip.family);
|
||||
debug("checking acl entry %d (%d/%d)", i, test->generic.sa_family,
|
||||
entry->ip.family);
|
||||
|
||||
if (test->generic.sa_family != entry->ip.family) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (test->generic.sa_family == AF_INET) {
|
||||
debug("it's an AF_INET");
|
||||
raw_address1 = (unsigned char*) &test->v4.sin_addr;
|
||||
raw_address2 = (unsigned char*) &entry->ip.v4.sin_addr;
|
||||
}
|
||||
else if (test->generic.sa_family == AF_INET6) {
|
||||
debug("it's an AF_INET6");
|
||||
raw_address1 = (unsigned char*) &test->v6.sin6_addr;
|
||||
raw_address2 = (unsigned char*) &entry->ip.v6.sin6_addr;
|
||||
}
|
||||
else {
|
||||
fatal( "Can't check an ACL for this address type." );
|
||||
}
|
||||
|
||||
debug("testbits=%d", entry->mask);
|
||||
|
||||
for (testbits = entry->mask; testbits > 0; testbits -= 8) {
|
||||
debug("testbits=%d, c1=%02x, c2=%02x", testbits, raw_address1[0], raw_address2[0]);
|
||||
if (testbits >= 8) {
|
||||
if (raw_address1[0] != raw_address2[0]) { goto no_match; }
|
||||
}
|
||||
else {
|
||||
if ((raw_address1[0] & testmasks[testbits%8]) !=
|
||||
(raw_address2[0] & testmasks[testbits%8]) ) {
|
||||
goto no_match;
|
||||
}
|
||||
}
|
||||
|
||||
raw_address1++;
|
||||
raw_address2++;
|
||||
}
|
||||
|
||||
return 1;
|
||||
|
||||
no_match: ;
|
||||
debug("no match");
|
||||
if (test->generic.sa_family != entry->ip.family) {
|
||||
continue;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int acl_includes( struct acl * acl, union mysockaddr * addr )
|
||||
{
|
||||
NULLCHECK( acl );
|
||||
|
||||
if ( 0 == acl->len ) {
|
||||
return !( acl->default_deny );
|
||||
if (test->generic.sa_family == AF_INET) {
|
||||
debug("it's an AF_INET");
|
||||
raw_address1 = (unsigned char *) &test->v4.sin_addr;
|
||||
raw_address2 = (unsigned char *) &entry->ip.v4.sin_addr;
|
||||
} else if (test->generic.sa_family == AF_INET6) {
|
||||
debug("it's an AF_INET6");
|
||||
raw_address1 = (unsigned char *) &test->v6.sin6_addr;
|
||||
raw_address2 = (unsigned char *) &entry->ip.v6.sin6_addr;
|
||||
} else {
|
||||
fatal("Can't check an ACL for this address type.");
|
||||
}
|
||||
else {
|
||||
return is_included_in_acl( acl->len, acl->entries, addr );
|
||||
|
||||
debug("testbits=%d", entry->mask);
|
||||
|
||||
for (testbits = entry->mask; testbits > 0; testbits -= 8) {
|
||||
debug("testbits=%d, c1=%02x, c2=%02x", testbits,
|
||||
raw_address1[0], raw_address2[0]);
|
||||
if (testbits >= 8) {
|
||||
if (raw_address1[0] != raw_address2[0]) {
|
||||
goto no_match;
|
||||
}
|
||||
} else {
|
||||
if ((raw_address1[0] & testmasks[testbits % 8]) !=
|
||||
(raw_address2[0] & testmasks[testbits % 8])) {
|
||||
goto no_match;
|
||||
}
|
||||
}
|
||||
|
||||
raw_address1++;
|
||||
raw_address2++;
|
||||
}
|
||||
|
||||
return 1;
|
||||
|
||||
no_match:;
|
||||
debug("no match");
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int acl_default_deny( struct acl * acl )
|
||||
int acl_includes(struct acl *acl, union mysockaddr *addr)
|
||||
{
|
||||
NULLCHECK( acl );
|
||||
return acl->default_deny;
|
||||
NULLCHECK(acl);
|
||||
|
||||
if (0 == acl->len) {
|
||||
return !(acl->default_deny);
|
||||
} else {
|
||||
return is_included_in_acl(acl->len, acl->entries, addr);
|
||||
}
|
||||
}
|
||||
|
||||
void acl_destroy( struct acl * acl )
|
||||
int acl_default_deny(struct acl *acl)
|
||||
{
|
||||
free( acl->entries );
|
||||
acl->len = 0;
|
||||
acl->entries = NULL;
|
||||
free( acl );
|
||||
NULLCHECK(acl);
|
||||
return acl->default_deny;
|
||||
}
|
||||
|
||||
void acl_destroy(struct acl *acl)
|
||||
{
|
||||
free(acl->entries);
|
||||
acl->len = 0;
|
||||
acl->entries = NULL;
|
||||
free(acl);
|
||||
}
|
||||
|
@@ -4,9 +4,9 @@
|
||||
#include "parse.h"
|
||||
|
||||
struct acl {
|
||||
int len;
|
||||
int default_deny;
|
||||
struct ip_and_mask (*entries)[];
|
||||
int len;
|
||||
int default_deny;
|
||||
struct ip_and_mask (*entries)[];
|
||||
};
|
||||
|
||||
/** Allocate a new acl structure, parsing the given lines to sockaddr
|
||||
@@ -17,21 +17,21 @@ struct acl {
|
||||
* default_deny controls the behaviour of an empty list: if true, all
|
||||
* requests will be denied. If true, all requests will be accepted.
|
||||
*/
|
||||
struct acl * acl_create( int len, char **lines, int default_deny );
|
||||
struct acl *acl_create(int len, char **lines, int default_deny);
|
||||
|
||||
|
||||
/** Check to see whether an address is allowed by an acl.
|
||||
* See acl_create for how the default_deny setting affects this.
|
||||
*/
|
||||
int acl_includes( struct acl *, union mysockaddr *);
|
||||
int acl_includes(struct acl *, union mysockaddr *);
|
||||
|
||||
/** Get the default_deny status */
|
||||
int acl_default_deny( struct acl * );
|
||||
int acl_default_deny(struct acl *);
|
||||
|
||||
|
||||
/** Free the acl structure and the internal acl entries table.
|
||||
*/
|
||||
void acl_destroy( struct acl * );
|
||||
void acl_destroy(struct acl *);
|
||||
|
||||
|
||||
#endif
|
||||
|
@@ -12,8 +12,8 @@
|
||||
* poking at the bits directly without using these
|
||||
* accessors/macros
|
||||
*/
|
||||
typedef uint64_t bitfield_word_t;
|
||||
typedef bitfield_word_t * bitfield_p;
|
||||
typedef uint64_t bitfield_word_t;
|
||||
typedef bitfield_word_t *bitfield_p;
|
||||
|
||||
#define BITFIELD_WORD_SIZE sizeof(bitfield_word_t)
|
||||
#define BITS_PER_WORD (BITFIELD_WORD_SIZE * 8)
|
||||
@@ -30,65 +30,78 @@ typedef bitfield_word_t * bitfield_p;
|
||||
((_bytes + (BITFIELD_WORD_SIZE-1)) / BITFIELD_WORD_SIZE)
|
||||
|
||||
/** Return the bit value ''idx'' in array ''b'' */
|
||||
static inline int bit_get(bitfield_p b, uint64_t idx) {
|
||||
return (BIT_WORD(b, idx) >> (idx & (BITS_PER_WORD-1))) & 1;
|
||||
static inline int bit_get(bitfield_p b, uint64_t idx)
|
||||
{
|
||||
return (BIT_WORD(b, idx) >> (idx & (BITS_PER_WORD - 1))) & 1;
|
||||
}
|
||||
|
||||
/** Return 1 if the bit at ''idx'' in array ''b'' is set */
|
||||
static inline int bit_is_set(bitfield_p b, uint64_t idx) {
|
||||
return bit_get(b, idx);
|
||||
static inline int bit_is_set(bitfield_p b, uint64_t idx)
|
||||
{
|
||||
return bit_get(b, idx);
|
||||
}
|
||||
|
||||
/** Return 1 if the bit at ''idx'' in array ''b'' is clear */
|
||||
static inline int bit_is_clear(bitfield_p b, uint64_t idx) {
|
||||
return !bit_get(b, idx);
|
||||
static inline int bit_is_clear(bitfield_p b, uint64_t idx)
|
||||
{
|
||||
return !bit_get(b, idx);
|
||||
}
|
||||
|
||||
/** Tests whether the bit at ''idx'' in array ''b'' has value ''value'' */
|
||||
static inline int bit_has_value(bitfield_p b, uint64_t idx, int value) {
|
||||
return bit_get(b, idx) == !!value;
|
||||
static inline int bit_has_value(bitfield_p b, uint64_t idx, int value)
|
||||
{
|
||||
return bit_get(b, idx) == ! !value;
|
||||
}
|
||||
|
||||
/** Sets the bit ''idx'' in array ''b'' */
|
||||
static inline void bit_set(bitfield_p b, uint64_t idx) {
|
||||
BIT_WORD(b, idx) |= BIT_MASK(idx);
|
||||
static inline void bit_set(bitfield_p b, uint64_t idx)
|
||||
{
|
||||
BIT_WORD(b, idx) |= BIT_MASK(idx);
|
||||
}
|
||||
|
||||
/** Clears the bit ''idx'' in array ''b'' */
|
||||
static inline void bit_clear(bitfield_p b, uint64_t idx) {
|
||||
BIT_WORD(b, idx) &= ~BIT_MASK(idx);
|
||||
static inline void bit_clear(bitfield_p b, uint64_t idx)
|
||||
{
|
||||
BIT_WORD(b, idx) &= ~BIT_MASK(idx);
|
||||
}
|
||||
|
||||
/** Sets ''len'' bits in array ''b'' starting at offset ''from'' */
|
||||
static inline void bit_set_range(bitfield_p b, uint64_t from, uint64_t len)
|
||||
{
|
||||
for ( ; (from % BITS_PER_WORD) != 0 && len > 0 ; len-- ) {
|
||||
bit_set( b, from++ );
|
||||
}
|
||||
for (; (from % BITS_PER_WORD) != 0 && len > 0; len--) {
|
||||
bit_set(b, from++);
|
||||
}
|
||||
|
||||
if (len >= BITS_PER_WORD) {
|
||||
memset(&BIT_WORD(b, from), 0xff, len / 8 );
|
||||
from += len;
|
||||
len = len % BITS_PER_WORD;
|
||||
from -= len;
|
||||
}
|
||||
if (len >= BITS_PER_WORD) {
|
||||
memset(&BIT_WORD(b, from), 0xff, len / 8);
|
||||
from += len;
|
||||
len = len % BITS_PER_WORD;
|
||||
from -= len;
|
||||
}
|
||||
|
||||
for ( ; len > 0 ; len-- ) {
|
||||
bit_set( b, from++ );
|
||||
}
|
||||
for (; len > 0; len--) {
|
||||
bit_set(b, from++);
|
||||
}
|
||||
}
|
||||
|
||||
/** Clears ''len'' bits in array ''b'' starting at offset ''from'' */
|
||||
static inline void bit_clear_range(bitfield_p b, uint64_t from, uint64_t len)
|
||||
static inline void bit_clear_range(bitfield_p b, uint64_t from,
|
||||
uint64_t len)
|
||||
{
|
||||
for ( ; (from % BITS_PER_WORD) != 0 && len > 0 ; len-- ) {
|
||||
bit_clear( b, from++ );
|
||||
}
|
||||
for (; (from % BITS_PER_WORD) != 0 && len > 0; len--) {
|
||||
bit_clear(b, from++);
|
||||
}
|
||||
|
||||
if (len >= BITS_PER_WORD) {
|
||||
memset(&BIT_WORD(b, from), 0, len / 8 );
|
||||
from += len;
|
||||
len = len % BITS_PER_WORD;
|
||||
from -= len;
|
||||
}
|
||||
if (len >= BITS_PER_WORD) {
|
||||
memset(&BIT_WORD(b, from), 0, len / 8);
|
||||
from += len;
|
||||
len = len % BITS_PER_WORD;
|
||||
from -= len;
|
||||
}
|
||||
|
||||
for ( ; len > 0 ; len-- ) {
|
||||
bit_clear( b, from++ );
|
||||
}
|
||||
for (; len > 0; len--) {
|
||||
bit_clear(b, from++);
|
||||
}
|
||||
}
|
||||
|
||||
/** Counts the number of contiguous bits in array ''b'', starting at ''from''
|
||||
@@ -96,52 +109,54 @@ static inline void bit_clear_range(bitfield_p b, uint64_t from, uint64_t len)
|
||||
* bits that are the same as the first one specified. If ''run_is_set'' is
|
||||
* non-NULL, the value of that bit is placed into it.
|
||||
*/
|
||||
static inline uint64_t bit_run_count(bitfield_p b, uint64_t from, uint64_t len, int *run_is_set) {
|
||||
uint64_t count = 0;
|
||||
int first_value = bit_get(b, from);
|
||||
bitfield_word_t word_match = first_value ? -1 : 0;
|
||||
static inline uint64_t bit_run_count(bitfield_p b, uint64_t from,
|
||||
uint64_t len, int *run_is_set)
|
||||
{
|
||||
uint64_t count = 0;
|
||||
int first_value = bit_get(b, from);
|
||||
bitfield_word_t word_match = first_value ? -1 : 0;
|
||||
|
||||
if ( run_is_set != NULL ) {
|
||||
*run_is_set = first_value;
|
||||
if (run_is_set != NULL) {
|
||||
*run_is_set = first_value;
|
||||
}
|
||||
|
||||
for (; ((from + count) % BITS_PER_WORD) != 0 && len > 0; len--) {
|
||||
if (bit_has_value(b, from + count, first_value)) {
|
||||
count++;
|
||||
} else {
|
||||
return count;
|
||||
}
|
||||
}
|
||||
|
||||
for ( ; ((from + count) % BITS_PER_WORD) != 0 && len > 0; len--) {
|
||||
if (bit_has_value(b, from + count, first_value)) {
|
||||
count++;
|
||||
} else {
|
||||
return count;
|
||||
}
|
||||
for (; len >= BITS_PER_WORD; len -= BITS_PER_WORD) {
|
||||
if (BIT_WORD(b, from + count) == word_match) {
|
||||
count += BITS_PER_WORD;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for ( ; len >= BITS_PER_WORD ; len -= BITS_PER_WORD ) {
|
||||
if (BIT_WORD(b, from + count) == word_match) {
|
||||
count += BITS_PER_WORD;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
for (; len > 0; len--) {
|
||||
if (bit_has_value(b, from + count, first_value)) {
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
for ( ; len > 0; len-- ) {
|
||||
if ( bit_has_value(b, from + count, first_value) ) {
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
return count;
|
||||
return count;
|
||||
}
|
||||
|
||||
enum bitset_stream_events {
|
||||
BITSET_STREAM_UNSET = 0,
|
||||
BITSET_STREAM_SET = 1,
|
||||
BITSET_STREAM_ON = 2,
|
||||
BITSET_STREAM_OFF = 3
|
||||
BITSET_STREAM_UNSET = 0,
|
||||
BITSET_STREAM_SET = 1,
|
||||
BITSET_STREAM_ON = 2,
|
||||
BITSET_STREAM_OFF = 3
|
||||
};
|
||||
#define BITSET_STREAM_EVENTS_ENUM_SIZE 4
|
||||
|
||||
struct bitset_stream_entry {
|
||||
enum bitset_stream_events event;
|
||||
uint64_t from;
|
||||
uint64_t len;
|
||||
enum bitset_stream_events event;
|
||||
uint64_t from;
|
||||
uint64_t len;
|
||||
};
|
||||
|
||||
/** Limit the stream size to 1MB for now.
|
||||
@@ -152,14 +167,14 @@ struct bitset_stream_entry {
|
||||
#define BITSET_STREAM_SIZE ( ( 1024 * 1024 ) / sizeof( struct bitset_stream_entry ) )
|
||||
|
||||
struct bitset_stream {
|
||||
struct bitset_stream_entry entries[BITSET_STREAM_SIZE];
|
||||
int in;
|
||||
int out;
|
||||
int size;
|
||||
pthread_mutex_t mutex;
|
||||
pthread_cond_t cond_not_full;
|
||||
pthread_cond_t cond_not_empty;
|
||||
uint64_t queued_bytes[BITSET_STREAM_EVENTS_ENUM_SIZE];
|
||||
struct bitset_stream_entry entries[BITSET_STREAM_SIZE];
|
||||
int in;
|
||||
int out;
|
||||
int size;
|
||||
pthread_mutex_t mutex;
|
||||
pthread_cond_t cond_not_full;
|
||||
pthread_cond_t cond_not_empty;
|
||||
uint64_t queued_bytes[BITSET_STREAM_EVENTS_ENUM_SIZE];
|
||||
};
|
||||
|
||||
|
||||
@@ -169,47 +184,49 @@ struct bitset_stream {
|
||||
* written reliably by multiple threads.
|
||||
*/
|
||||
struct bitset {
|
||||
pthread_mutex_t lock;
|
||||
uint64_t size;
|
||||
int resolution;
|
||||
struct bitset_stream *stream;
|
||||
int stream_enabled;
|
||||
bitfield_word_t bits[];
|
||||
pthread_mutex_t lock;
|
||||
uint64_t size;
|
||||
int resolution;
|
||||
struct bitset_stream *stream;
|
||||
int stream_enabled;
|
||||
bitfield_word_t bits[];
|
||||
};
|
||||
|
||||
/** Allocate a bitset for a file of the given size, and chunks of the
|
||||
* given resolution.
|
||||
*/
|
||||
static inline struct bitset *bitset_alloc( uint64_t size, int resolution )
|
||||
static inline struct bitset *bitset_alloc(uint64_t size, int resolution)
|
||||
{
|
||||
// calculate a size to allocate that is a multiple of the size of the
|
||||
// bitfield word
|
||||
size_t bitfield_size =
|
||||
BIT_WORDS_FOR_SIZE((( size + resolution - 1 ) / resolution)) * sizeof( bitfield_word_t );
|
||||
struct bitset *bitset = xmalloc(sizeof( struct bitset ) + ( bitfield_size / 8 ) );
|
||||
// calculate a size to allocate that is a multiple of the size of the
|
||||
// bitfield word
|
||||
size_t bitfield_size =
|
||||
BIT_WORDS_FOR_SIZE(((size + resolution -
|
||||
1) / resolution)) * sizeof(bitfield_word_t);
|
||||
struct bitset *bitset =
|
||||
xmalloc(sizeof(struct bitset) + (bitfield_size / 8));
|
||||
|
||||
bitset->size = size;
|
||||
bitset->resolution = resolution;
|
||||
/* don't actually need to call pthread_mutex_destroy '*/
|
||||
pthread_mutex_init(&bitset->lock, NULL);
|
||||
bitset->stream = xmalloc( sizeof( struct bitset_stream ) );
|
||||
pthread_mutex_init( &bitset->stream->mutex, NULL );
|
||||
bitset->size = size;
|
||||
bitset->resolution = resolution;
|
||||
/* don't actually need to call pthread_mutex_destroy ' */
|
||||
pthread_mutex_init(&bitset->lock, NULL);
|
||||
bitset->stream = xmalloc(sizeof(struct bitset_stream));
|
||||
pthread_mutex_init(&bitset->stream->mutex, NULL);
|
||||
|
||||
/* Technically don't need to call pthread_cond_destroy either */
|
||||
pthread_cond_init( &bitset->stream->cond_not_full, NULL );
|
||||
pthread_cond_init( &bitset->stream->cond_not_empty, NULL );
|
||||
/* Technically don't need to call pthread_cond_destroy either */
|
||||
pthread_cond_init(&bitset->stream->cond_not_full, NULL);
|
||||
pthread_cond_init(&bitset->stream->cond_not_empty, NULL);
|
||||
|
||||
return bitset;
|
||||
return bitset;
|
||||
}
|
||||
|
||||
static inline void bitset_free( struct bitset * set )
|
||||
static inline void bitset_free(struct bitset *set)
|
||||
{
|
||||
/* TODO: free our mutex... */
|
||||
/* TODO: free our mutex... */
|
||||
|
||||
free( set->stream );
|
||||
set->stream = NULL;
|
||||
free(set->stream);
|
||||
set->stream = NULL;
|
||||
|
||||
free( set );
|
||||
free(set);
|
||||
}
|
||||
|
||||
#define INT_FIRST_AND_LAST \
|
||||
@@ -224,215 +241,201 @@ static inline void bitset_free( struct bitset * set )
|
||||
FATAL_IF_NEGATIVE(pthread_mutex_unlock(&set->lock), "Error unlocking bitset")
|
||||
|
||||
|
||||
static inline void bitset_stream_enqueue(
|
||||
struct bitset * set,
|
||||
enum bitset_stream_events event,
|
||||
uint64_t from,
|
||||
uint64_t len
|
||||
)
|
||||
static inline void bitset_stream_enqueue(struct bitset *set,
|
||||
enum bitset_stream_events event,
|
||||
uint64_t from, uint64_t len)
|
||||
{
|
||||
struct bitset_stream * stream = set->stream;
|
||||
struct bitset_stream *stream = set->stream;
|
||||
|
||||
pthread_mutex_lock( &stream->mutex );
|
||||
pthread_mutex_lock(&stream->mutex);
|
||||
|
||||
while ( stream->size == BITSET_STREAM_SIZE ) {
|
||||
pthread_cond_wait( &stream->cond_not_full, &stream->mutex );
|
||||
}
|
||||
while (stream->size == BITSET_STREAM_SIZE) {
|
||||
pthread_cond_wait(&stream->cond_not_full, &stream->mutex);
|
||||
}
|
||||
|
||||
stream->entries[stream->in].event = event;
|
||||
stream->entries[stream->in].from = from;
|
||||
stream->entries[stream->in].len = len;
|
||||
stream->queued_bytes[event] += len;
|
||||
stream->entries[stream->in].event = event;
|
||||
stream->entries[stream->in].from = from;
|
||||
stream->entries[stream->in].len = len;
|
||||
stream->queued_bytes[event] += len;
|
||||
|
||||
stream->size++;
|
||||
stream->in++;
|
||||
stream->in %= BITSET_STREAM_SIZE;
|
||||
stream->size++;
|
||||
stream->in++;
|
||||
stream->in %= BITSET_STREAM_SIZE;
|
||||
|
||||
pthread_mutex_unlock( & stream->mutex );
|
||||
pthread_cond_signal( &stream->cond_not_empty );
|
||||
pthread_mutex_unlock(&stream->mutex);
|
||||
pthread_cond_signal(&stream->cond_not_empty);
|
||||
|
||||
return;
|
||||
return;
|
||||
}
|
||||
|
||||
static inline void bitset_stream_dequeue(
|
||||
struct bitset * set,
|
||||
struct bitset_stream_entry * out
|
||||
)
|
||||
static inline void bitset_stream_dequeue(struct bitset *set,
|
||||
struct bitset_stream_entry *out)
|
||||
{
|
||||
struct bitset_stream * stream = set->stream;
|
||||
struct bitset_stream_entry * dequeued;
|
||||
struct bitset_stream *stream = set->stream;
|
||||
struct bitset_stream_entry *dequeued;
|
||||
|
||||
pthread_mutex_lock( &stream->mutex );
|
||||
pthread_mutex_lock(&stream->mutex);
|
||||
|
||||
while ( stream->size == 0 ) {
|
||||
pthread_cond_wait( &stream->cond_not_empty, &stream->mutex );
|
||||
}
|
||||
while (stream->size == 0) {
|
||||
pthread_cond_wait(&stream->cond_not_empty, &stream->mutex);
|
||||
}
|
||||
|
||||
dequeued = &stream->entries[stream->out];
|
||||
dequeued = &stream->entries[stream->out];
|
||||
|
||||
if ( out != NULL ) {
|
||||
out->event = dequeued->event;
|
||||
out->from = dequeued->from;
|
||||
out->len = dequeued->len;
|
||||
}
|
||||
if (out != NULL) {
|
||||
out->event = dequeued->event;
|
||||
out->from = dequeued->from;
|
||||
out->len = dequeued->len;
|
||||
}
|
||||
|
||||
stream->queued_bytes[dequeued->event] -= dequeued->len;
|
||||
stream->size--;
|
||||
stream->out++;
|
||||
stream->out %= BITSET_STREAM_SIZE;
|
||||
stream->queued_bytes[dequeued->event] -= dequeued->len;
|
||||
stream->size--;
|
||||
stream->out++;
|
||||
stream->out %= BITSET_STREAM_SIZE;
|
||||
|
||||
pthread_mutex_unlock( &stream->mutex );
|
||||
pthread_cond_signal( &stream->cond_not_full );
|
||||
pthread_mutex_unlock(&stream->mutex);
|
||||
pthread_cond_signal(&stream->cond_not_full);
|
||||
|
||||
return;
|
||||
return;
|
||||
}
|
||||
|
||||
static inline size_t bitset_stream_size( struct bitset * set )
|
||||
static inline size_t bitset_stream_size(struct bitset *set)
|
||||
{
|
||||
size_t size;
|
||||
size_t size;
|
||||
|
||||
pthread_mutex_lock( &set->stream->mutex );
|
||||
size = set->stream->size;
|
||||
pthread_mutex_unlock( &set->stream->mutex );
|
||||
pthread_mutex_lock(&set->stream->mutex);
|
||||
size = set->stream->size;
|
||||
pthread_mutex_unlock(&set->stream->mutex);
|
||||
|
||||
return size;
|
||||
return size;
|
||||
}
|
||||
|
||||
static inline uint64_t bitset_stream_queued_bytes(
|
||||
struct bitset * set,
|
||||
enum bitset_stream_events event
|
||||
)
|
||||
static inline uint64_t bitset_stream_queued_bytes(struct bitset *set,
|
||||
enum bitset_stream_events
|
||||
event)
|
||||
{
|
||||
uint64_t total;
|
||||
uint64_t total;
|
||||
|
||||
pthread_mutex_lock( &set->stream->mutex );
|
||||
total = set->stream->queued_bytes[event];
|
||||
pthread_mutex_unlock( &set->stream->mutex );
|
||||
pthread_mutex_lock(&set->stream->mutex);
|
||||
total = set->stream->queued_bytes[event];
|
||||
pthread_mutex_unlock(&set->stream->mutex);
|
||||
|
||||
return total;
|
||||
return total;
|
||||
}
|
||||
|
||||
static inline void bitset_enable_stream( struct bitset * set )
|
||||
static inline void bitset_enable_stream(struct bitset *set)
|
||||
{
|
||||
BITSET_LOCK;
|
||||
set->stream_enabled = 1;
|
||||
bitset_stream_enqueue( set, BITSET_STREAM_ON, 0, set->size );
|
||||
BITSET_UNLOCK;
|
||||
BITSET_LOCK;
|
||||
set->stream_enabled = 1;
|
||||
bitset_stream_enqueue(set, BITSET_STREAM_ON, 0, set->size);
|
||||
BITSET_UNLOCK;
|
||||
}
|
||||
|
||||
static inline void bitset_disable_stream( struct bitset * set )
|
||||
static inline void bitset_disable_stream(struct bitset *set)
|
||||
{
|
||||
BITSET_LOCK;
|
||||
bitset_stream_enqueue( set, BITSET_STREAM_OFF, 0, set->size );
|
||||
set->stream_enabled = 0;
|
||||
BITSET_UNLOCK;
|
||||
BITSET_LOCK;
|
||||
bitset_stream_enqueue(set, BITSET_STREAM_OFF, 0, set->size);
|
||||
set->stream_enabled = 0;
|
||||
BITSET_UNLOCK;
|
||||
}
|
||||
|
||||
/** Set the bits in a bitset which correspond to the given bytes in the larger
|
||||
* file.
|
||||
*/
|
||||
static inline void bitset_set_range(
|
||||
struct bitset * set,
|
||||
uint64_t from,
|
||||
uint64_t len)
|
||||
static inline void bitset_set_range(struct bitset *set,
|
||||
uint64_t from, uint64_t len)
|
||||
{
|
||||
INT_FIRST_AND_LAST;
|
||||
BITSET_LOCK;
|
||||
bit_set_range(set->bits, first, bitlen);
|
||||
INT_FIRST_AND_LAST;
|
||||
BITSET_LOCK;
|
||||
bit_set_range(set->bits, first, bitlen);
|
||||
|
||||
if ( set->stream_enabled ) {
|
||||
bitset_stream_enqueue( set, BITSET_STREAM_SET, from, len );
|
||||
}
|
||||
if (set->stream_enabled) {
|
||||
bitset_stream_enqueue(set, BITSET_STREAM_SET, from, len);
|
||||
}
|
||||
|
||||
BITSET_UNLOCK;
|
||||
BITSET_UNLOCK;
|
||||
}
|
||||
|
||||
|
||||
/** Set every bit in the bitset. */
|
||||
static inline void bitset_set( struct bitset * set )
|
||||
static inline void bitset_set(struct bitset *set)
|
||||
{
|
||||
bitset_set_range(set, 0, set->size);
|
||||
bitset_set_range(set, 0, set->size);
|
||||
}
|
||||
|
||||
/** Clear the bits in a bitset which correspond to the given bytes in the
|
||||
* larger file.
|
||||
*/
|
||||
static inline void bitset_clear_range(
|
||||
struct bitset * set,
|
||||
uint64_t from,
|
||||
uint64_t len)
|
||||
static inline void bitset_clear_range(struct bitset *set,
|
||||
uint64_t from, uint64_t len)
|
||||
{
|
||||
INT_FIRST_AND_LAST;
|
||||
BITSET_LOCK;
|
||||
bit_clear_range(set->bits, first, bitlen);
|
||||
INT_FIRST_AND_LAST;
|
||||
BITSET_LOCK;
|
||||
bit_clear_range(set->bits, first, bitlen);
|
||||
|
||||
if ( set->stream_enabled ) {
|
||||
bitset_stream_enqueue( set, BITSET_STREAM_UNSET, from, len );
|
||||
}
|
||||
if (set->stream_enabled) {
|
||||
bitset_stream_enqueue(set, BITSET_STREAM_UNSET, from, len);
|
||||
}
|
||||
|
||||
BITSET_UNLOCK;
|
||||
BITSET_UNLOCK;
|
||||
}
|
||||
|
||||
|
||||
/** Clear every bit in the bitset. */
|
||||
static inline void bitset_clear( struct bitset * set )
|
||||
static inline void bitset_clear(struct bitset *set)
|
||||
{
|
||||
bitset_clear_range(set, 0, set->size);
|
||||
bitset_clear_range(set, 0, set->size);
|
||||
}
|
||||
|
||||
/** As per bitset_run_count but also tells you whether the run it found was set
|
||||
* or unset, atomically.
|
||||
*/
|
||||
static inline uint64_t bitset_run_count_ex(
|
||||
struct bitset * set,
|
||||
uint64_t from,
|
||||
uint64_t len,
|
||||
int* run_is_set
|
||||
)
|
||||
static inline uint64_t bitset_run_count_ex(struct bitset *set,
|
||||
uint64_t from,
|
||||
uint64_t len, int *run_is_set)
|
||||
{
|
||||
uint64_t run;
|
||||
uint64_t run;
|
||||
|
||||
/* Clip our requests to the end of the bitset, avoiding uint underflow. */
|
||||
if ( from > set->size ) {
|
||||
return 0;
|
||||
}
|
||||
len = ( len + from ) > set->size ? ( set->size - from ) : len;
|
||||
/* Clip our requests to the end of the bitset, avoiding uint underflow. */
|
||||
if (from > set->size) {
|
||||
return 0;
|
||||
}
|
||||
len = (len + from) > set->size ? (set->size - from) : len;
|
||||
|
||||
INT_FIRST_AND_LAST;
|
||||
INT_FIRST_AND_LAST;
|
||||
|
||||
BITSET_LOCK;
|
||||
run = bit_run_count(set->bits, first, bitlen, run_is_set) * set->resolution;
|
||||
run -= (from % set->resolution);
|
||||
BITSET_UNLOCK;
|
||||
BITSET_LOCK;
|
||||
run =
|
||||
bit_run_count(set->bits, first, bitlen,
|
||||
run_is_set) * set->resolution;
|
||||
run -= (from % set->resolution);
|
||||
BITSET_UNLOCK;
|
||||
|
||||
return run;
|
||||
return run;
|
||||
}
|
||||
|
||||
/** Counts the number of contiguous bytes that are represented as a run in
|
||||
* the bit field.
|
||||
*/
|
||||
static inline uint64_t bitset_run_count(
|
||||
struct bitset * set,
|
||||
uint64_t from,
|
||||
uint64_t len)
|
||||
static inline uint64_t bitset_run_count(struct bitset *set,
|
||||
uint64_t from, uint64_t len)
|
||||
{
|
||||
return bitset_run_count_ex( set, from, len, NULL );
|
||||
return bitset_run_count_ex(set, from, len, NULL);
|
||||
}
|
||||
|
||||
/** Tests whether the bit field is clear for the given file offset.
|
||||
*/
|
||||
static inline int bitset_is_clear_at( struct bitset * set, uint64_t at )
|
||||
static inline int bitset_is_clear_at(struct bitset *set, uint64_t at)
|
||||
{
|
||||
return bit_is_clear(set->bits, at/set->resolution);
|
||||
return bit_is_clear(set->bits, at / set->resolution);
|
||||
}
|
||||
|
||||
/** Tests whether the bit field is set for the given file offset.
|
||||
*/
|
||||
static inline int bitset_is_set_at( struct bitset * set, uint64_t at )
|
||||
static inline int bitset_is_set_at(struct bitset *set, uint64_t at)
|
||||
{
|
||||
return bit_is_set(set->bits, at/set->resolution);
|
||||
return bit_is_set(set->bits, at / set->resolution);
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
1009
src/server/client.c
1009
src/server/client.c
File diff suppressed because it is too large
Load Diff
@@ -19,41 +19,40 @@
|
||||
|
||||
|
||||
struct client {
|
||||
/* When we call pthread_join, if the thread is already dead
|
||||
* we can get an ESRCH. Since we have no other way to tell
|
||||
* if that ESRCH is from a dead thread or a thread that never
|
||||
* existed, we use a `stopped` flag to indicate a thread which
|
||||
* did exist, but went away. Only check this after a
|
||||
* pthread_join call.
|
||||
*/
|
||||
int stopped;
|
||||
int socket;
|
||||
/* When we call pthread_join, if the thread is already dead
|
||||
* we can get an ESRCH. Since we have no other way to tell
|
||||
* if that ESRCH is from a dead thread or a thread that never
|
||||
* existed, we use a `stopped` flag to indicate a thread which
|
||||
* did exist, but went away. Only check this after a
|
||||
* pthread_join call.
|
||||
*/
|
||||
int stopped;
|
||||
int socket;
|
||||
|
||||
int fileno;
|
||||
char* mapped;
|
||||
int fileno;
|
||||
char *mapped;
|
||||
|
||||
uint64_t mapped_size;
|
||||
uint64_t mapped_size;
|
||||
|
||||
struct self_pipe * stop_signal;
|
||||
struct self_pipe *stop_signal;
|
||||
|
||||
struct server* serve; /* FIXME: remove above duplication */
|
||||
struct server *serve; /* FIXME: remove above duplication */
|
||||
|
||||
/* Have we seen a REQUEST_DISCONNECT message? */
|
||||
int disconnect;
|
||||
/* Have we seen a REQUEST_DISCONNECT message? */
|
||||
int disconnect;
|
||||
|
||||
/* kill the whole server if a request has been outstanding too long,
|
||||
* assuming use_killswitch is set in serve
|
||||
*/
|
||||
timer_t killswitch;
|
||||
/* kill the whole server if a request has been outstanding too long,
|
||||
* assuming use_killswitch is set in serve
|
||||
*/
|
||||
timer_t killswitch;
|
||||
|
||||
};
|
||||
|
||||
void client_killswitch_hit(int signal, siginfo_t *info, void *ptr);
|
||||
void client_killswitch_hit(int signal, siginfo_t * info, void *ptr);
|
||||
|
||||
void* client_serve(void* client_uncast);
|
||||
struct client * client_create( struct server * serve, int socket );
|
||||
void client_destroy( struct client * client );
|
||||
void client_signal_stop( struct client * client );
|
||||
void *client_serve(void *client_uncast);
|
||||
struct client *client_create(struct server *serve, int socket);
|
||||
void client_destroy(struct client *client);
|
||||
void client_signal_stop(struct client *client);
|
||||
|
||||
#endif
|
||||
|
||||
|
@@ -44,590 +44,570 @@
|
||||
#include <unistd.h>
|
||||
|
||||
|
||||
struct control * control_create(
|
||||
struct flexnbd * flexnbd,
|
||||
const char * csn)
|
||||
struct control *control_create(struct flexnbd *flexnbd, const char *csn)
|
||||
{
|
||||
struct control * control = xmalloc( sizeof( struct control ) );
|
||||
struct control *control = xmalloc(sizeof(struct control));
|
||||
|
||||
NULLCHECK( csn );
|
||||
NULLCHECK(csn);
|
||||
|
||||
control->flexnbd = flexnbd;
|
||||
control->socket_name = csn;
|
||||
control->open_signal = self_pipe_create();
|
||||
control->close_signal = self_pipe_create();
|
||||
control->mirror_state_mbox = mbox_create();
|
||||
control->flexnbd = flexnbd;
|
||||
control->socket_name = csn;
|
||||
control->open_signal = self_pipe_create();
|
||||
control->close_signal = self_pipe_create();
|
||||
control->mirror_state_mbox = mbox_create();
|
||||
|
||||
return control;
|
||||
return control;
|
||||
}
|
||||
|
||||
|
||||
void control_signal_close( struct control * control)
|
||||
void control_signal_close(struct control *control)
|
||||
{
|
||||
|
||||
NULLCHECK( control );
|
||||
self_pipe_signal( control->close_signal );
|
||||
NULLCHECK(control);
|
||||
self_pipe_signal(control->close_signal);
|
||||
}
|
||||
|
||||
|
||||
void control_destroy( struct control * control )
|
||||
void control_destroy(struct control *control)
|
||||
{
|
||||
NULLCHECK( control );
|
||||
NULLCHECK(control);
|
||||
|
||||
mbox_destroy( control->mirror_state_mbox );
|
||||
self_pipe_destroy( control->close_signal );
|
||||
self_pipe_destroy( control->open_signal );
|
||||
free( control );
|
||||
mbox_destroy(control->mirror_state_mbox);
|
||||
self_pipe_destroy(control->close_signal);
|
||||
self_pipe_destroy(control->open_signal);
|
||||
free(control);
|
||||
}
|
||||
|
||||
struct control_client * control_client_create(
|
||||
struct flexnbd * flexnbd,
|
||||
int client_fd ,
|
||||
struct mbox * state_mbox )
|
||||
struct control_client *control_client_create(struct flexnbd *flexnbd,
|
||||
int client_fd,
|
||||
struct mbox *state_mbox)
|
||||
{
|
||||
NULLCHECK( flexnbd );
|
||||
NULLCHECK(flexnbd);
|
||||
|
||||
struct control_client * control_client =
|
||||
xmalloc( sizeof( struct control_client ) );
|
||||
struct control_client *control_client =
|
||||
xmalloc(sizeof(struct control_client));
|
||||
|
||||
control_client->socket = client_fd;
|
||||
control_client->flexnbd = flexnbd;
|
||||
control_client->mirror_state_mbox = state_mbox;
|
||||
return control_client;
|
||||
control_client->socket = client_fd;
|
||||
control_client->flexnbd = flexnbd;
|
||||
control_client->mirror_state_mbox = state_mbox;
|
||||
return control_client;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void control_client_destroy( struct control_client * client )
|
||||
void control_client_destroy(struct control_client *client)
|
||||
{
|
||||
NULLCHECK( client );
|
||||
free( client );
|
||||
NULLCHECK(client);
|
||||
free(client);
|
||||
}
|
||||
|
||||
|
||||
void control_respond(struct control_client * client);
|
||||
void control_respond(struct control_client *client);
|
||||
|
||||
void control_handle_client( struct control * control, int client_fd )
|
||||
void control_handle_client(struct control *control, int client_fd)
|
||||
{
|
||||
NULLCHECK( control );
|
||||
NULLCHECK( control->flexnbd );
|
||||
struct control_client * control_client =
|
||||
control_client_create(
|
||||
control->flexnbd,
|
||||
client_fd ,
|
||||
control->mirror_state_mbox);
|
||||
NULLCHECK(control);
|
||||
NULLCHECK(control->flexnbd);
|
||||
struct control_client *control_client =
|
||||
control_client_create(control->flexnbd,
|
||||
client_fd,
|
||||
control->mirror_state_mbox);
|
||||
|
||||
/* We intentionally don't spawn a thread for the client here.
|
||||
* This is to avoid having more than one thread potentially
|
||||
* waiting on the migration commit status.
|
||||
*/
|
||||
control_respond( control_client );
|
||||
/* We intentionally don't spawn a thread for the client here.
|
||||
* This is to avoid having more than one thread potentially
|
||||
* waiting on the migration commit status.
|
||||
*/
|
||||
control_respond(control_client);
|
||||
}
|
||||
|
||||
|
||||
void control_accept_client( struct control * control )
|
||||
void control_accept_client(struct control *control)
|
||||
{
|
||||
|
||||
int client_fd;
|
||||
union mysockaddr client_address;
|
||||
socklen_t addrlen = sizeof( union mysockaddr );
|
||||
int client_fd;
|
||||
union mysockaddr client_address;
|
||||
socklen_t addrlen = sizeof(union mysockaddr);
|
||||
|
||||
client_fd = accept( control->control_fd, &client_address.generic, &addrlen );
|
||||
FATAL_IF( -1 == client_fd, "control accept failed" );
|
||||
client_fd =
|
||||
accept(control->control_fd, &client_address.generic, &addrlen);
|
||||
FATAL_IF(-1 == client_fd, "control accept failed");
|
||||
|
||||
control_handle_client( control, client_fd );
|
||||
control_handle_client(control, client_fd);
|
||||
}
|
||||
|
||||
int control_accept( struct control * control )
|
||||
int control_accept(struct control *control)
|
||||
{
|
||||
NULLCHECK( control );
|
||||
NULLCHECK(control);
|
||||
|
||||
fd_set fds;
|
||||
fd_set fds;
|
||||
|
||||
FD_ZERO( &fds );
|
||||
FD_SET( control->control_fd, &fds );
|
||||
self_pipe_fd_set( control->close_signal, &fds );
|
||||
debug("Control thread selecting");
|
||||
FATAL_UNLESS( 0 < select( FD_SETSIZE, &fds, NULL, NULL, NULL ),
|
||||
"Control select failed." );
|
||||
FD_ZERO(&fds);
|
||||
FD_SET(control->control_fd, &fds);
|
||||
self_pipe_fd_set(control->close_signal, &fds);
|
||||
debug("Control thread selecting");
|
||||
FATAL_UNLESS(0 < select(FD_SETSIZE, &fds, NULL, NULL, NULL),
|
||||
"Control select failed.");
|
||||
|
||||
if ( self_pipe_fd_isset( control->close_signal, &fds ) ){
|
||||
return 0;
|
||||
}
|
||||
if (self_pipe_fd_isset(control->close_signal, &fds)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if ( FD_ISSET( control->control_fd, &fds ) ) {
|
||||
control_accept_client( control );
|
||||
}
|
||||
return 1;
|
||||
if (FD_ISSET(control->control_fd, &fds)) {
|
||||
control_accept_client(control);
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
void control_accept_loop( struct control * control )
|
||||
void control_accept_loop(struct control *control)
|
||||
{
|
||||
while( control_accept( control ) );
|
||||
while (control_accept(control));
|
||||
}
|
||||
|
||||
|
||||
int open_control_socket( const char * socket_name )
|
||||
int open_control_socket(const char *socket_name)
|
||||
{
|
||||
struct sockaddr_un bind_address;
|
||||
int control_fd;
|
||||
struct sockaddr_un bind_address;
|
||||
int control_fd;
|
||||
|
||||
if (!socket_name) {
|
||||
fatal( "Tried to open a control socket without a socket name" );
|
||||
}
|
||||
if (!socket_name) {
|
||||
fatal("Tried to open a control socket without a socket name");
|
||||
}
|
||||
|
||||
control_fd = socket(AF_UNIX, SOCK_STREAM, 0);
|
||||
FATAL_IF_NEGATIVE(control_fd ,
|
||||
"Couldn't create control socket");
|
||||
control_fd = socket(AF_UNIX, SOCK_STREAM, 0);
|
||||
FATAL_IF_NEGATIVE(control_fd, "Couldn't create control socket");
|
||||
|
||||
memset(&bind_address, 0, sizeof(struct sockaddr_un));
|
||||
bind_address.sun_family = AF_UNIX;
|
||||
strncpy(bind_address.sun_path, socket_name, sizeof(bind_address.sun_path)-1);
|
||||
memset(&bind_address, 0, sizeof(struct sockaddr_un));
|
||||
bind_address.sun_family = AF_UNIX;
|
||||
strncpy(bind_address.sun_path, socket_name,
|
||||
sizeof(bind_address.sun_path) - 1);
|
||||
|
||||
//unlink(socket_name); /* ignore failure */
|
||||
//unlink(socket_name); /* ignore failure */
|
||||
|
||||
FATAL_IF_NEGATIVE(
|
||||
bind(control_fd , &bind_address, sizeof(bind_address)),
|
||||
"Couldn't bind control socket to %s: %s",
|
||||
socket_name, strerror( errno )
|
||||
FATAL_IF_NEGATIVE(bind
|
||||
(control_fd, &bind_address, sizeof(bind_address)),
|
||||
"Couldn't bind control socket to %s: %s",
|
||||
socket_name, strerror(errno)
|
||||
);
|
||||
|
||||
FATAL_IF_NEGATIVE(
|
||||
listen(control_fd , 5),
|
||||
"Couldn't listen on control socket"
|
||||
);
|
||||
return control_fd;
|
||||
FATAL_IF_NEGATIVE(listen(control_fd, 5),
|
||||
"Couldn't listen on control socket");
|
||||
return control_fd;
|
||||
}
|
||||
|
||||
|
||||
void control_listen(struct control* control)
|
||||
void control_listen(struct control *control)
|
||||
{
|
||||
NULLCHECK( control );
|
||||
control->control_fd = open_control_socket( control->socket_name );
|
||||
NULLCHECK(control);
|
||||
control->control_fd = open_control_socket(control->socket_name);
|
||||
}
|
||||
|
||||
void control_wait_for_open_signal( struct control * control )
|
||||
void control_wait_for_open_signal(struct control *control)
|
||||
{
|
||||
fd_set fds;
|
||||
FD_ZERO( &fds );
|
||||
self_pipe_fd_set( control->open_signal, &fds );
|
||||
FATAL_IF_NEGATIVE( select( FD_SETSIZE, &fds, NULL, NULL, NULL ),
|
||||
"select() failed" );
|
||||
fd_set fds;
|
||||
FD_ZERO(&fds);
|
||||
self_pipe_fd_set(control->open_signal, &fds);
|
||||
FATAL_IF_NEGATIVE(select(FD_SETSIZE, &fds, NULL, NULL, NULL),
|
||||
"select() failed");
|
||||
|
||||
self_pipe_signal_clear( control->open_signal );
|
||||
self_pipe_signal_clear(control->open_signal);
|
||||
}
|
||||
|
||||
|
||||
void control_serve( struct control * control )
|
||||
void control_serve(struct control *control)
|
||||
{
|
||||
NULLCHECK( control );
|
||||
NULLCHECK(control);
|
||||
|
||||
control_wait_for_open_signal( control );
|
||||
control_listen( control );
|
||||
while( control_accept( control ) );
|
||||
control_wait_for_open_signal(control);
|
||||
control_listen(control);
|
||||
while (control_accept(control));
|
||||
}
|
||||
|
||||
|
||||
void control_cleanup(
|
||||
struct control * control,
|
||||
int fatal __attribute__((unused)) )
|
||||
void control_cleanup(struct control *control,
|
||||
int fatal __attribute__ ((unused)))
|
||||
{
|
||||
NULLCHECK( control );
|
||||
unlink( control->socket_name );
|
||||
close( control->control_fd );
|
||||
NULLCHECK(control);
|
||||
unlink(control->socket_name);
|
||||
close(control->control_fd);
|
||||
}
|
||||
|
||||
|
||||
void * control_runner( void * control_uncast )
|
||||
void *control_runner(void *control_uncast)
|
||||
{
|
||||
debug("Control thread");
|
||||
NULLCHECK( control_uncast );
|
||||
struct control * control = (struct control *)control_uncast;
|
||||
debug("Control thread");
|
||||
NULLCHECK(control_uncast);
|
||||
struct control *control = (struct control *) control_uncast;
|
||||
|
||||
error_set_handler( (cleanup_handler*)control_cleanup, control );
|
||||
error_set_handler((cleanup_handler *) control_cleanup, control);
|
||||
|
||||
control_serve( control );
|
||||
control_serve(control);
|
||||
|
||||
control_cleanup( control, 0 );
|
||||
pthread_exit( NULL );
|
||||
control_cleanup(control, 0);
|
||||
pthread_exit(NULL);
|
||||
}
|
||||
|
||||
|
||||
#define write_socket(msg) write(client_fd, (msg "\n"), strlen((msg))+1)
|
||||
|
||||
void control_write_mirror_response( enum mirror_state mirror_state, int client_fd )
|
||||
void control_write_mirror_response(enum mirror_state mirror_state,
|
||||
int client_fd)
|
||||
{
|
||||
switch (mirror_state) {
|
||||
case MS_INIT:
|
||||
case MS_UNKNOWN:
|
||||
write_socket( "1: Mirror failed to initialise" );
|
||||
fatal( "Impossible mirror state: %d", mirror_state );
|
||||
case MS_FAIL_CONNECT:
|
||||
write_socket( "1: Mirror failed to connect");
|
||||
break;
|
||||
case MS_FAIL_REJECTED:
|
||||
write_socket( "1: Mirror was rejected" );
|
||||
break;
|
||||
case MS_FAIL_NO_HELLO:
|
||||
write_socket( "1: Remote server failed to respond");
|
||||
break;
|
||||
case MS_FAIL_SIZE_MISMATCH:
|
||||
write_socket( "1: Remote size does not match local size" );
|
||||
break;
|
||||
case MS_ABANDONED:
|
||||
write_socket( "1: Mirroring abandoned" );
|
||||
break;
|
||||
case MS_GO:
|
||||
case MS_DONE: /* Yes, I know we know better, but it's simpler this way */
|
||||
write_socket( "0: Mirror started" );
|
||||
break;
|
||||
default:
|
||||
fatal( "Unhandled mirror state: %d", mirror_state );
|
||||
}
|
||||
switch (mirror_state) {
|
||||
case MS_INIT:
|
||||
case MS_UNKNOWN:
|
||||
write_socket("1: Mirror failed to initialise");
|
||||
fatal("Impossible mirror state: %d", mirror_state);
|
||||
case MS_FAIL_CONNECT:
|
||||
write_socket("1: Mirror failed to connect");
|
||||
break;
|
||||
case MS_FAIL_REJECTED:
|
||||
write_socket("1: Mirror was rejected");
|
||||
break;
|
||||
case MS_FAIL_NO_HELLO:
|
||||
write_socket("1: Remote server failed to respond");
|
||||
break;
|
||||
case MS_FAIL_SIZE_MISMATCH:
|
||||
write_socket("1: Remote size does not match local size");
|
||||
break;
|
||||
case MS_ABANDONED:
|
||||
write_socket("1: Mirroring abandoned");
|
||||
break;
|
||||
case MS_GO:
|
||||
case MS_DONE: /* Yes, I know we know better, but it's simpler this way */
|
||||
write_socket("0: Mirror started");
|
||||
break;
|
||||
default:
|
||||
fatal("Unhandled mirror state: %d", mirror_state);
|
||||
}
|
||||
}
|
||||
|
||||
#undef write_socket
|
||||
|
||||
|
||||
/* Call this in the thread where you want to receive the mirror state */
|
||||
enum mirror_state control_client_mirror_wait(
|
||||
struct control_client* client)
|
||||
enum mirror_state control_client_mirror_wait(struct control_client *client)
|
||||
{
|
||||
NULLCHECK( client );
|
||||
NULLCHECK( client->mirror_state_mbox );
|
||||
NULLCHECK(client);
|
||||
NULLCHECK(client->mirror_state_mbox);
|
||||
|
||||
struct mbox * mbox = client->mirror_state_mbox;
|
||||
enum mirror_state mirror_state;
|
||||
enum mirror_state * contents;
|
||||
struct mbox *mbox = client->mirror_state_mbox;
|
||||
enum mirror_state mirror_state;
|
||||
enum mirror_state *contents;
|
||||
|
||||
contents = (enum mirror_state*)mbox_receive( mbox );
|
||||
NULLCHECK( contents );
|
||||
contents = (enum mirror_state *) mbox_receive(mbox);
|
||||
NULLCHECK(contents);
|
||||
|
||||
mirror_state = *contents;
|
||||
mirror_state = *contents;
|
||||
|
||||
free( contents );
|
||||
free(contents);
|
||||
|
||||
return mirror_state;
|
||||
return mirror_state;
|
||||
}
|
||||
|
||||
#define write_socket(msg) write(client->socket, (msg "\n"), strlen((msg))+1)
|
||||
/** Command parser to start mirror process from socket input */
|
||||
int control_mirror(struct control_client* client, int linesc, char** lines)
|
||||
int control_mirror(struct control_client *client, int linesc, char **lines)
|
||||
{
|
||||
NULLCHECK( client );
|
||||
NULLCHECK(client);
|
||||
|
||||
struct flexnbd * flexnbd = client->flexnbd;
|
||||
union mysockaddr *connect_to = xmalloc( sizeof( union mysockaddr ) );
|
||||
union mysockaddr *connect_from = NULL;
|
||||
uint64_t max_Bps = UINT64_MAX;
|
||||
int action_at_finish;
|
||||
int raw_port;
|
||||
struct flexnbd *flexnbd = client->flexnbd;
|
||||
union mysockaddr *connect_to = xmalloc(sizeof(union mysockaddr));
|
||||
union mysockaddr *connect_from = NULL;
|
||||
uint64_t max_Bps = UINT64_MAX;
|
||||
int action_at_finish;
|
||||
int raw_port;
|
||||
|
||||
|
||||
if (linesc < 2) {
|
||||
write_socket("1: mirror takes at least two parameters");
|
||||
return -1;
|
||||
if (linesc < 2) {
|
||||
write_socket("1: mirror takes at least two parameters");
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (parse_ip_to_sockaddr(&connect_to->generic, lines[0]) == 0) {
|
||||
write_socket("1: bad IP address");
|
||||
return -1;
|
||||
}
|
||||
|
||||
raw_port = atoi(lines[1]);
|
||||
if (raw_port < 0 || raw_port > 65535) {
|
||||
write_socket("1: bad IP port number");
|
||||
return -1;
|
||||
}
|
||||
connect_to->v4.sin_port = htobe16(raw_port);
|
||||
|
||||
action_at_finish = ACTION_EXIT;
|
||||
if (linesc > 2) {
|
||||
if (strcmp("exit", lines[2]) == 0) {
|
||||
action_at_finish = ACTION_EXIT;
|
||||
} else if (strcmp("unlink", lines[2]) == 0) {
|
||||
action_at_finish = ACTION_UNLINK;
|
||||
} else if (strcmp("nothing", lines[2]) == 0) {
|
||||
action_at_finish = ACTION_NOTHING;
|
||||
} else {
|
||||
write_socket("1: action must be 'exit' or 'nothing'");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
if (linesc > 3) {
|
||||
connect_from = xmalloc(sizeof(union mysockaddr));
|
||||
if (parse_ip_to_sockaddr(&connect_from->generic, lines[3]) == 0) {
|
||||
write_socket("1: bad bind address");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
if (linesc > 4) {
|
||||
errno = 0;
|
||||
max_Bps = strtoull(lines[4], NULL, 10);
|
||||
if (errno == ERANGE) {
|
||||
write_socket("1: max_bps out of range");
|
||||
return -1;
|
||||
} else if (errno != 0) {
|
||||
write_socket("1: max_bps couldn't be parsed");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (linesc > 5) {
|
||||
write_socket("1: unrecognised parameters to mirror");
|
||||
return -1;
|
||||
}
|
||||
|
||||
struct server *serve = flexnbd_server(flexnbd);
|
||||
|
||||
server_lock_start_mirror(serve);
|
||||
{
|
||||
if (server_mirror_can_start(serve)) {
|
||||
serve->mirror_super = mirror_super_create(serve->filename,
|
||||
connect_to,
|
||||
connect_from,
|
||||
max_Bps,
|
||||
action_at_finish,
|
||||
client->
|
||||
mirror_state_mbox);
|
||||
serve->mirror = serve->mirror_super->mirror;
|
||||
server_prevent_mirror_start(serve);
|
||||
} else {
|
||||
if (serve->mirror_super) {
|
||||
warn("Tried to start a second mirror run");
|
||||
write_socket("1: mirror already running");
|
||||
} else {
|
||||
warn("Cannot start mirroring, shutting down");
|
||||
write_socket("1: shutting down");
|
||||
}
|
||||
}
|
||||
|
||||
if (parse_ip_to_sockaddr(&connect_to->generic, lines[0]) == 0) {
|
||||
write_socket("1: bad IP address");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
server_unlock_start_mirror(serve);
|
||||
|
||||
raw_port = atoi(lines[1]);
|
||||
if (raw_port < 0 || raw_port > 65535) {
|
||||
write_socket("1: bad IP port number");
|
||||
return -1;
|
||||
}
|
||||
connect_to->v4.sin_port = htobe16(raw_port);
|
||||
/* Do this outside the lock to minimise the length of time the
|
||||
* sighandler can block the serve thread
|
||||
*/
|
||||
if (serve->mirror_super) {
|
||||
FATAL_IF(0 != pthread_create(&serve->mirror_super->thread,
|
||||
NULL,
|
||||
mirror_super_runner,
|
||||
serve),
|
||||
"Failed to create mirror thread");
|
||||
|
||||
action_at_finish = ACTION_EXIT;
|
||||
if (linesc > 2) {
|
||||
if (strcmp("exit", lines[2]) == 0) {
|
||||
action_at_finish = ACTION_EXIT;
|
||||
}
|
||||
else if (strcmp( "unlink", lines[2]) == 0 ) {
|
||||
action_at_finish = ACTION_UNLINK;
|
||||
}
|
||||
else if (strcmp("nothing", lines[2]) == 0) {
|
||||
action_at_finish = ACTION_NOTHING;
|
||||
}
|
||||
else {
|
||||
write_socket("1: action must be 'exit' or 'nothing'");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
debug("Control thread mirror super waiting");
|
||||
enum mirror_state state = control_client_mirror_wait(client);
|
||||
debug("Control thread writing response");
|
||||
control_write_mirror_response(state, client->socket);
|
||||
}
|
||||
|
||||
if (linesc > 3) {
|
||||
connect_from = xmalloc( sizeof( union mysockaddr ) );
|
||||
if (parse_ip_to_sockaddr(&connect_from->generic, lines[3]) == 0) {
|
||||
write_socket("1: bad bind address");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
debug("Control thread going away.");
|
||||
|
||||
if (linesc > 4) {
|
||||
errno = 0;
|
||||
max_Bps = strtoull( lines[4], NULL, 10 );
|
||||
if ( errno == ERANGE ) {
|
||||
write_socket( "1: max_bps out of range" );
|
||||
return -1;
|
||||
} else if ( errno != 0 ) {
|
||||
write_socket( "1: max_bps couldn't be parsed" );
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (linesc > 5) {
|
||||
write_socket("1: unrecognised parameters to mirror");
|
||||
return -1;
|
||||
}
|
||||
|
||||
struct server * serve = flexnbd_server(flexnbd);
|
||||
|
||||
server_lock_start_mirror( serve );
|
||||
{
|
||||
if ( server_mirror_can_start( serve ) ) {
|
||||
serve->mirror_super = mirror_super_create(
|
||||
serve->filename,
|
||||
connect_to,
|
||||
connect_from,
|
||||
max_Bps ,
|
||||
action_at_finish,
|
||||
client->mirror_state_mbox );
|
||||
serve->mirror = serve->mirror_super->mirror;
|
||||
server_prevent_mirror_start( serve );
|
||||
} else {
|
||||
if ( serve->mirror_super ) {
|
||||
warn( "Tried to start a second mirror run" );
|
||||
write_socket( "1: mirror already running" );
|
||||
} else {
|
||||
warn( "Cannot start mirroring, shutting down" );
|
||||
write_socket( "1: shutting down" );
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
server_unlock_start_mirror( serve );
|
||||
|
||||
/* Do this outside the lock to minimise the length of time the
|
||||
* sighandler can block the serve thread
|
||||
*/
|
||||
if ( serve->mirror_super ) {
|
||||
FATAL_IF( 0 != pthread_create(
|
||||
&serve->mirror_super->thread,
|
||||
NULL,
|
||||
mirror_super_runner,
|
||||
serve
|
||||
),
|
||||
"Failed to create mirror thread"
|
||||
);
|
||||
|
||||
debug("Control thread mirror super waiting");
|
||||
enum mirror_state state =
|
||||
control_client_mirror_wait( client );
|
||||
debug("Control thread writing response");
|
||||
control_write_mirror_response( state, client->socket );
|
||||
}
|
||||
|
||||
debug( "Control thread going away." );
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int control_mirror_max_bps( struct control_client* client, int linesc, char** lines )
|
||||
int control_mirror_max_bps(struct control_client *client, int linesc,
|
||||
char **lines)
|
||||
{
|
||||
NULLCHECK( client );
|
||||
NULLCHECK( client->flexnbd );
|
||||
NULLCHECK(client);
|
||||
NULLCHECK(client->flexnbd);
|
||||
|
||||
struct server* serve = flexnbd_server( client->flexnbd );
|
||||
uint64_t max_Bps;
|
||||
struct server *serve = flexnbd_server(client->flexnbd);
|
||||
uint64_t max_Bps;
|
||||
|
||||
if ( !serve->mirror_super ) {
|
||||
write_socket( "1: Not currently mirroring" );
|
||||
return -1;
|
||||
}
|
||||
if (!serve->mirror_super) {
|
||||
write_socket("1: Not currently mirroring");
|
||||
return -1;
|
||||
}
|
||||
|
||||
if ( linesc != 1 ) {
|
||||
write_socket( "1: Bad format" );
|
||||
return -1;
|
||||
}
|
||||
if (linesc != 1) {
|
||||
write_socket("1: Bad format");
|
||||
return -1;
|
||||
}
|
||||
|
||||
errno = 0;
|
||||
max_Bps = strtoull( lines[0], NULL, 10 );
|
||||
if ( errno == ERANGE ) {
|
||||
write_socket( "1: max_bps out of range" );
|
||||
return -1;
|
||||
} else if ( errno != 0 ) {
|
||||
write_socket( "1: max_bps couldn't be parsed" );
|
||||
return -1;
|
||||
}
|
||||
errno = 0;
|
||||
max_Bps = strtoull(lines[0], NULL, 10);
|
||||
if (errno == ERANGE) {
|
||||
write_socket("1: max_bps out of range");
|
||||
return -1;
|
||||
} else if (errno != 0) {
|
||||
write_socket("1: max_bps couldn't be parsed");
|
||||
return -1;
|
||||
}
|
||||
|
||||
serve->mirror->max_bytes_per_second = max_Bps;
|
||||
write_socket( "0: updated" );
|
||||
serve->mirror->max_bytes_per_second = max_Bps;
|
||||
write_socket("0: updated");
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#undef write_socket
|
||||
|
||||
/** Command parser to alter access control list from socket input */
|
||||
int control_acl(struct control_client* client, int linesc, char** lines)
|
||||
int control_acl(struct control_client *client, int linesc, char **lines)
|
||||
{
|
||||
NULLCHECK( client );
|
||||
NULLCHECK( client->flexnbd );
|
||||
struct flexnbd * flexnbd = client->flexnbd;
|
||||
NULLCHECK(client);
|
||||
NULLCHECK(client->flexnbd);
|
||||
struct flexnbd *flexnbd = client->flexnbd;
|
||||
|
||||
int default_deny = flexnbd_default_deny( flexnbd );
|
||||
struct acl * new_acl = acl_create( linesc, lines, default_deny );
|
||||
int default_deny = flexnbd_default_deny(flexnbd);
|
||||
struct acl *new_acl = acl_create(linesc, lines, default_deny);
|
||||
|
||||
if (new_acl->len != linesc) {
|
||||
warn("Bad ACL spec: %s", lines[new_acl->len] );
|
||||
write(client->socket, "1: bad spec: ", 13);
|
||||
write(client->socket, lines[new_acl->len],
|
||||
strlen(lines[new_acl->len]));
|
||||
write(client->socket, "\n", 1);
|
||||
acl_destroy( new_acl );
|
||||
}
|
||||
else {
|
||||
flexnbd_replace_acl( flexnbd, new_acl );
|
||||
info("ACL set");
|
||||
write( client->socket, "0: updated\n", 11);
|
||||
}
|
||||
if (new_acl->len != linesc) {
|
||||
warn("Bad ACL spec: %s", lines[new_acl->len]);
|
||||
write(client->socket, "1: bad spec: ", 13);
|
||||
write(client->socket, lines[new_acl->len],
|
||||
strlen(lines[new_acl->len]));
|
||||
write(client->socket, "\n", 1);
|
||||
acl_destroy(new_acl);
|
||||
} else {
|
||||
flexnbd_replace_acl(flexnbd, new_acl);
|
||||
info("ACL set");
|
||||
write(client->socket, "0: updated\n", 11);
|
||||
}
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
int control_break(
|
||||
struct control_client* client,
|
||||
int linesc __attribute__ ((unused)),
|
||||
char** lines __attribute__((unused))
|
||||
)
|
||||
int control_break(struct control_client *client,
|
||||
int linesc __attribute__ ((unused)),
|
||||
char **lines __attribute__ ((unused))
|
||||
)
|
||||
{
|
||||
NULLCHECK( client );
|
||||
NULLCHECK( client->flexnbd );
|
||||
NULLCHECK(client);
|
||||
NULLCHECK(client->flexnbd);
|
||||
|
||||
int result = 0;
|
||||
struct flexnbd* flexnbd = client->flexnbd;
|
||||
int result = 0;
|
||||
struct flexnbd *flexnbd = client->flexnbd;
|
||||
|
||||
struct server * serve = flexnbd_server( flexnbd );
|
||||
struct server *serve = flexnbd_server(flexnbd);
|
||||
|
||||
server_lock_start_mirror( serve );
|
||||
{
|
||||
if ( server_is_mirroring( serve ) ) {
|
||||
server_lock_start_mirror(serve);
|
||||
{
|
||||
if (server_is_mirroring(serve)) {
|
||||
|
||||
info( "Signaling to abandon mirror" );
|
||||
server_abandon_mirror( serve );
|
||||
debug( "Abandon signaled" );
|
||||
info("Signaling to abandon mirror");
|
||||
server_abandon_mirror(serve);
|
||||
debug("Abandon signaled");
|
||||
|
||||
if ( server_is_closed( serve ) ) {
|
||||
info( "Mirror completed while canceling" );
|
||||
write( client->socket,
|
||||
"1: mirror completed\n", 20 );
|
||||
}
|
||||
else {
|
||||
info( "Mirror successfully stopped." );
|
||||
write( client->socket,
|
||||
"0: mirror stopped\n", 18 );
|
||||
result = 1;
|
||||
}
|
||||
if (server_is_closed(serve)) {
|
||||
info("Mirror completed while canceling");
|
||||
write(client->socket, "1: mirror completed\n", 20);
|
||||
} else {
|
||||
info("Mirror successfully stopped.");
|
||||
write(client->socket, "0: mirror stopped\n", 18);
|
||||
result = 1;
|
||||
}
|
||||
|
||||
} else {
|
||||
warn( "Not mirroring." );
|
||||
write( client->socket, "1: not mirroring\n", 17 );
|
||||
}
|
||||
} else {
|
||||
warn("Not mirroring.");
|
||||
write(client->socket, "1: not mirroring\n", 17);
|
||||
}
|
||||
server_unlock_start_mirror( serve );
|
||||
}
|
||||
server_unlock_start_mirror(serve);
|
||||
|
||||
return result;
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/** FIXME: add some useful statistics */
|
||||
int control_status(
|
||||
struct control_client* client,
|
||||
int linesc __attribute__ ((unused)),
|
||||
char** lines __attribute__((unused))
|
||||
)
|
||||
int control_status(struct control_client *client,
|
||||
int linesc __attribute__ ((unused)),
|
||||
char **lines __attribute__ ((unused))
|
||||
)
|
||||
{
|
||||
NULLCHECK( client );
|
||||
NULLCHECK( client->flexnbd );
|
||||
struct status * status = flexnbd_status_create( client->flexnbd );
|
||||
NULLCHECK(client);
|
||||
NULLCHECK(client->flexnbd);
|
||||
struct status *status = flexnbd_status_create(client->flexnbd);
|
||||
|
||||
write( client->socket, "0: ", 3 );
|
||||
status_write( status, client->socket );
|
||||
status_destroy( status );
|
||||
write(client->socket, "0: ", 3);
|
||||
status_write(status, client->socket);
|
||||
status_destroy(status);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void control_client_cleanup(struct control_client* client,
|
||||
int fatal __attribute__ ((unused)) )
|
||||
void control_client_cleanup(struct control_client *client,
|
||||
int fatal __attribute__ ((unused)))
|
||||
{
|
||||
if (client->socket) { close(client->socket); }
|
||||
if (client->socket) {
|
||||
close(client->socket);
|
||||
}
|
||||
|
||||
/* This is wrongness */
|
||||
if ( server_acl_locked( client->flexnbd->serve ) ) { server_unlock_acl( client->flexnbd->serve ); }
|
||||
/* This is wrongness */
|
||||
if (server_acl_locked(client->flexnbd->serve)) {
|
||||
server_unlock_acl(client->flexnbd->serve);
|
||||
}
|
||||
|
||||
control_client_destroy( client );
|
||||
control_client_destroy(client);
|
||||
}
|
||||
|
||||
/** Master command parser for control socket connections, delegates quickly */
|
||||
void control_respond(struct control_client * client)
|
||||
void control_respond(struct control_client *client)
|
||||
{
|
||||
char **lines = NULL;
|
||||
char **lines = NULL;
|
||||
|
||||
error_set_handler((cleanup_handler*) control_client_cleanup, client);
|
||||
error_set_handler((cleanup_handler *) control_client_cleanup, client);
|
||||
|
||||
int i, linesc;
|
||||
linesc = read_lines_until_blankline(client->socket, 256, &lines);
|
||||
int i, linesc;
|
||||
linesc = read_lines_until_blankline(client->socket, 256, &lines);
|
||||
|
||||
if (linesc < 1)
|
||||
{
|
||||
write(client->socket, "9: missing command\n", 19);
|
||||
/* ignore failure */
|
||||
if (linesc < 1) {
|
||||
write(client->socket, "9: missing command\n", 19);
|
||||
/* ignore failure */
|
||||
} else if (strcmp(lines[0], "acl") == 0) {
|
||||
info("acl command received");
|
||||
if (control_acl(client, linesc - 1, lines + 1) < 0) {
|
||||
debug("acl command failed");
|
||||
}
|
||||
else if (strcmp(lines[0], "acl") == 0) {
|
||||
info("acl command received" );
|
||||
if (control_acl(client, linesc-1, lines+1) < 0) {
|
||||
debug("acl command failed");
|
||||
}
|
||||
} else if (strcmp(lines[0], "mirror") == 0) {
|
||||
info("mirror command received");
|
||||
if (control_mirror(client, linesc - 1, lines + 1) < 0) {
|
||||
debug("mirror command failed");
|
||||
}
|
||||
else if (strcmp(lines[0], "mirror") == 0) {
|
||||
info("mirror command received" );
|
||||
if (control_mirror(client, linesc-1, lines+1) < 0) {
|
||||
debug("mirror command failed");
|
||||
}
|
||||
} else if (strcmp(lines[0], "break") == 0) {
|
||||
info("break command received");
|
||||
if (control_break(client, linesc - 1, lines + 1) < 0) {
|
||||
debug("break command failed");
|
||||
}
|
||||
else if (strcmp(lines[0], "break") == 0) {
|
||||
info( "break command received" );
|
||||
if ( control_break( client, linesc-1, lines+1) < 0) {
|
||||
debug( "break command failed" );
|
||||
}
|
||||
} else if (strcmp(lines[0], "status") == 0) {
|
||||
info("status command received");
|
||||
if (control_status(client, linesc - 1, lines + 1) < 0) {
|
||||
debug("status command failed");
|
||||
}
|
||||
else if (strcmp(lines[0], "status") == 0) {
|
||||
info("status command received" );
|
||||
if (control_status(client, linesc-1, lines+1) < 0) {
|
||||
debug("status command failed");
|
||||
}
|
||||
} else if ( strcmp( lines[0], "mirror_max_bps" ) == 0 ) {
|
||||
info( "mirror_max_bps command received" );
|
||||
if( control_mirror_max_bps( client, linesc-1, lines+1 ) < 0 ) {
|
||||
debug( "mirror_max_bps command failed" );
|
||||
}
|
||||
}
|
||||
else {
|
||||
write(client->socket, "10: unknown command\n", 23);
|
||||
} else if (strcmp(lines[0], "mirror_max_bps") == 0) {
|
||||
info("mirror_max_bps command received");
|
||||
if (control_mirror_max_bps(client, linesc - 1, lines + 1) < 0) {
|
||||
debug("mirror_max_bps command failed");
|
||||
}
|
||||
} else {
|
||||
write(client->socket, "10: unknown command\n", 23);
|
||||
}
|
||||
|
||||
for (i=0; i<linesc; i++) {
|
||||
free(lines[i]);
|
||||
}
|
||||
free(lines);
|
||||
for (i = 0; i < linesc; i++) {
|
||||
free(lines[i]);
|
||||
}
|
||||
free(lines);
|
||||
|
||||
control_client_cleanup(client, 0);
|
||||
debug("control command handled" );
|
||||
control_client_cleanup(client, 0);
|
||||
debug("control command handled");
|
||||
}
|
||||
|
||||
|
@@ -13,47 +13,46 @@ struct server;
|
||||
#include "mbox.h"
|
||||
|
||||
struct control {
|
||||
struct flexnbd * flexnbd;
|
||||
int control_fd;
|
||||
const char * socket_name;
|
||||
struct flexnbd *flexnbd;
|
||||
int control_fd;
|
||||
const char *socket_name;
|
||||
|
||||
pthread_t thread;
|
||||
pthread_t thread;
|
||||
|
||||
struct self_pipe * open_signal;
|
||||
struct self_pipe * close_signal;
|
||||
struct self_pipe *open_signal;
|
||||
struct self_pipe *close_signal;
|
||||
|
||||
/* This is owned by the control object, and used by a
|
||||
* mirror_super to communicate the state of a mirror attempt as
|
||||
* early as feasible. It can't be owned by the mirror_super
|
||||
* object because the mirror_super object can be freed at any
|
||||
* time (including while the control_client is waiting on it),
|
||||
* whereas the control object lasts for the lifetime of the
|
||||
* process (and we can only have a mirror thread if the control
|
||||
* thread has started it).
|
||||
*/
|
||||
struct mbox * mirror_state_mbox;
|
||||
/* This is owned by the control object, and used by a
|
||||
* mirror_super to communicate the state of a mirror attempt as
|
||||
* early as feasible. It can't be owned by the mirror_super
|
||||
* object because the mirror_super object can be freed at any
|
||||
* time (including while the control_client is waiting on it),
|
||||
* whereas the control object lasts for the lifetime of the
|
||||
* process (and we can only have a mirror thread if the control
|
||||
* thread has started it).
|
||||
*/
|
||||
struct mbox *mirror_state_mbox;
|
||||
};
|
||||
|
||||
struct control_client{
|
||||
int socket;
|
||||
struct flexnbd * flexnbd;
|
||||
struct control_client {
|
||||
int socket;
|
||||
struct flexnbd *flexnbd;
|
||||
|
||||
/* Passed in on creation. We know it's all right to do this
|
||||
* because we know there's only ever one control_client.
|
||||
*/
|
||||
struct mbox * mirror_state_mbox;
|
||||
/* Passed in on creation. We know it's all right to do this
|
||||
* because we know there's only ever one control_client.
|
||||
*/
|
||||
struct mbox *mirror_state_mbox;
|
||||
};
|
||||
|
||||
struct control * control_create(
|
||||
struct flexnbd *,
|
||||
const char * control_socket_name );
|
||||
void control_signal_close( struct control * );
|
||||
void control_destroy( struct control * );
|
||||
struct control *control_create(struct flexnbd *,
|
||||
const char *control_socket_name);
|
||||
void control_signal_close(struct control *);
|
||||
void control_destroy(struct control *);
|
||||
|
||||
void * control_runner( void * );
|
||||
void *control_runner(void *);
|
||||
|
||||
void accept_control_connection(struct server* params, int client_fd, union mysockaddr* client_address);
|
||||
void serve_open_control_socket(struct server* params);
|
||||
void accept_control_connection(struct server *params, int client_fd,
|
||||
union mysockaddr *client_address);
|
||||
void serve_open_control_socket(struct server *params);
|
||||
|
||||
#endif
|
||||
|
||||
|
@@ -43,223 +43,206 @@
|
||||
|
||||
int flexnbd_build_signal_fd(void)
|
||||
{
|
||||
sigset_t mask;
|
||||
int sfd;
|
||||
sigset_t mask;
|
||||
int sfd;
|
||||
|
||||
sigemptyset( &mask );
|
||||
sigaddset( &mask, SIGTERM );
|
||||
sigaddset( &mask, SIGQUIT );
|
||||
sigaddset( &mask, SIGINT );
|
||||
sigemptyset(&mask);
|
||||
sigaddset(&mask, SIGTERM);
|
||||
sigaddset(&mask, SIGQUIT);
|
||||
sigaddset(&mask, SIGINT);
|
||||
|
||||
FATAL_UNLESS( 0 == pthread_sigmask( SIG_BLOCK, &mask, NULL ),
|
||||
"Signal blocking failed" );
|
||||
FATAL_UNLESS(0 == pthread_sigmask(SIG_BLOCK, &mask, NULL),
|
||||
"Signal blocking failed");
|
||||
|
||||
sfd = signalfd( -1, &mask, 0 );
|
||||
FATAL_IF( -1 == sfd, "Failed to get a signal fd" );
|
||||
sfd = signalfd(-1, &mask, 0);
|
||||
FATAL_IF(-1 == sfd, "Failed to get a signal fd");
|
||||
|
||||
return sfd;
|
||||
return sfd;
|
||||
}
|
||||
|
||||
|
||||
void flexnbd_create_shared(
|
||||
struct flexnbd * flexnbd,
|
||||
const char * s_ctrl_sock)
|
||||
void flexnbd_create_shared(struct flexnbd *flexnbd,
|
||||
const char *s_ctrl_sock)
|
||||
{
|
||||
NULLCHECK( flexnbd );
|
||||
if ( s_ctrl_sock ){
|
||||
flexnbd->control =
|
||||
control_create( flexnbd, s_ctrl_sock );
|
||||
}
|
||||
else {
|
||||
flexnbd->control = NULL;
|
||||
}
|
||||
NULLCHECK(flexnbd);
|
||||
if (s_ctrl_sock) {
|
||||
flexnbd->control = control_create(flexnbd, s_ctrl_sock);
|
||||
} else {
|
||||
flexnbd->control = NULL;
|
||||
}
|
||||
|
||||
flexnbd->signal_fd = flexnbd_build_signal_fd();
|
||||
flexnbd->signal_fd = flexnbd_build_signal_fd();
|
||||
}
|
||||
|
||||
|
||||
struct flexnbd * flexnbd_create_serving(
|
||||
char* s_ip_address,
|
||||
char* s_port,
|
||||
char* s_file,
|
||||
char* s_ctrl_sock,
|
||||
int default_deny,
|
||||
int acl_entries,
|
||||
char** s_acl_entries,
|
||||
int max_nbd_clients,
|
||||
int use_killswitch)
|
||||
struct flexnbd *flexnbd_create_serving(char *s_ip_address,
|
||||
char *s_port,
|
||||
char *s_file,
|
||||
char *s_ctrl_sock,
|
||||
int default_deny,
|
||||
int acl_entries,
|
||||
char **s_acl_entries,
|
||||
int max_nbd_clients,
|
||||
int use_killswitch)
|
||||
{
|
||||
struct flexnbd * flexnbd = xmalloc( sizeof( struct flexnbd ) );
|
||||
flexnbd->serve = server_create(
|
||||
flexnbd,
|
||||
s_ip_address,
|
||||
s_port,
|
||||
s_file,
|
||||
default_deny,
|
||||
acl_entries,
|
||||
s_acl_entries,
|
||||
max_nbd_clients,
|
||||
use_killswitch,
|
||||
1);
|
||||
flexnbd_create_shared( flexnbd, s_ctrl_sock );
|
||||
struct flexnbd *flexnbd = xmalloc(sizeof(struct flexnbd));
|
||||
flexnbd->serve = server_create(flexnbd,
|
||||
s_ip_address,
|
||||
s_port,
|
||||
s_file,
|
||||
default_deny,
|
||||
acl_entries,
|
||||
s_acl_entries,
|
||||
max_nbd_clients, use_killswitch, 1);
|
||||
flexnbd_create_shared(flexnbd, s_ctrl_sock);
|
||||
|
||||
// Beats installing one handler per client instance
|
||||
if ( use_killswitch ) {
|
||||
struct sigaction act = {
|
||||
.sa_sigaction = client_killswitch_hit,
|
||||
.sa_flags = SA_RESTART | SA_SIGINFO
|
||||
};
|
||||
// Beats installing one handler per client instance
|
||||
if (use_killswitch) {
|
||||
struct sigaction act = {
|
||||
.sa_sigaction = client_killswitch_hit,
|
||||
.sa_flags = SA_RESTART | SA_SIGINFO
|
||||
};
|
||||
|
||||
FATAL_UNLESS(
|
||||
0 == sigaction( CLIENT_KILLSWITCH_SIGNAL, &act, NULL ),
|
||||
"Installing client killswitch signal failed"
|
||||
);
|
||||
}
|
||||
FATAL_UNLESS(0 == sigaction(CLIENT_KILLSWITCH_SIGNAL, &act, NULL),
|
||||
"Installing client killswitch signal failed");
|
||||
}
|
||||
|
||||
return flexnbd;
|
||||
return flexnbd;
|
||||
}
|
||||
|
||||
struct flexnbd * flexnbd_create_listening(
|
||||
char* s_ip_address,
|
||||
char* s_port,
|
||||
char* s_file,
|
||||
char* s_ctrl_sock,
|
||||
int default_deny,
|
||||
int acl_entries,
|
||||
char** s_acl_entries )
|
||||
struct flexnbd *flexnbd_create_listening(char *s_ip_address,
|
||||
char *s_port,
|
||||
char *s_file,
|
||||
char *s_ctrl_sock,
|
||||
int default_deny,
|
||||
int acl_entries,
|
||||
char **s_acl_entries)
|
||||
{
|
||||
struct flexnbd * flexnbd = xmalloc( sizeof( struct flexnbd ) );
|
||||
flexnbd->serve = server_create(
|
||||
flexnbd,
|
||||
s_ip_address,
|
||||
s_port,
|
||||
s_file,
|
||||
default_deny,
|
||||
acl_entries,
|
||||
s_acl_entries,
|
||||
1, 0, 0);
|
||||
flexnbd_create_shared( flexnbd, s_ctrl_sock );
|
||||
struct flexnbd *flexnbd = xmalloc(sizeof(struct flexnbd));
|
||||
flexnbd->serve = server_create(flexnbd,
|
||||
s_ip_address,
|
||||
s_port,
|
||||
s_file,
|
||||
default_deny,
|
||||
acl_entries, s_acl_entries, 1, 0, 0);
|
||||
flexnbd_create_shared(flexnbd, s_ctrl_sock);
|
||||
|
||||
// listen can't use killswitch, as mirror may pause on sending things
|
||||
// for a very long time.
|
||||
// listen can't use killswitch, as mirror may pause on sending things
|
||||
// for a very long time.
|
||||
|
||||
return flexnbd;
|
||||
return flexnbd;
|
||||
}
|
||||
|
||||
void flexnbd_spawn_control(struct flexnbd * flexnbd )
|
||||
void flexnbd_spawn_control(struct flexnbd *flexnbd)
|
||||
{
|
||||
NULLCHECK( flexnbd );
|
||||
NULLCHECK( flexnbd->control );
|
||||
NULLCHECK(flexnbd);
|
||||
NULLCHECK(flexnbd->control);
|
||||
|
||||
pthread_t * control_thread = &flexnbd->control->thread;
|
||||
pthread_t *control_thread = &flexnbd->control->thread;
|
||||
|
||||
FATAL_UNLESS( 0 == pthread_create(
|
||||
control_thread,
|
||||
NULL,
|
||||
control_runner,
|
||||
flexnbd->control ),
|
||||
"Couldn't create the control thread" );
|
||||
FATAL_UNLESS(0 == pthread_create(control_thread,
|
||||
NULL,
|
||||
control_runner,
|
||||
flexnbd->control),
|
||||
"Couldn't create the control thread");
|
||||
}
|
||||
|
||||
void flexnbd_stop_control( struct flexnbd * flexnbd )
|
||||
void flexnbd_stop_control(struct flexnbd *flexnbd)
|
||||
{
|
||||
NULLCHECK( flexnbd );
|
||||
NULLCHECK( flexnbd->control );
|
||||
NULLCHECK(flexnbd);
|
||||
NULLCHECK(flexnbd->control);
|
||||
|
||||
control_signal_close( flexnbd->control );
|
||||
pthread_t tid = flexnbd->control->thread;
|
||||
FATAL_UNLESS( 0 == pthread_join( tid, NULL ),
|
||||
"Failed joining the control thread" );
|
||||
debug( "Control thread %p pthread_join returned", tid );
|
||||
control_signal_close(flexnbd->control);
|
||||
pthread_t tid = flexnbd->control->thread;
|
||||
FATAL_UNLESS(0 == pthread_join(tid, NULL),
|
||||
"Failed joining the control thread");
|
||||
debug("Control thread %p pthread_join returned", tid);
|
||||
}
|
||||
|
||||
|
||||
int flexnbd_signal_fd( struct flexnbd * flexnbd )
|
||||
int flexnbd_signal_fd(struct flexnbd *flexnbd)
|
||||
{
|
||||
NULLCHECK( flexnbd );
|
||||
return flexnbd->signal_fd;
|
||||
NULLCHECK(flexnbd);
|
||||
return flexnbd->signal_fd;
|
||||
}
|
||||
|
||||
void flexnbd_destroy( struct flexnbd * flexnbd )
|
||||
void flexnbd_destroy(struct flexnbd *flexnbd)
|
||||
{
|
||||
NULLCHECK( flexnbd );
|
||||
if ( flexnbd->control ) {
|
||||
control_destroy( flexnbd->control );
|
||||
}
|
||||
NULLCHECK(flexnbd);
|
||||
if (flexnbd->control) {
|
||||
control_destroy(flexnbd->control);
|
||||
}
|
||||
|
||||
close( flexnbd->signal_fd );
|
||||
free( flexnbd );
|
||||
close(flexnbd->signal_fd);
|
||||
free(flexnbd);
|
||||
}
|
||||
|
||||
|
||||
struct server * flexnbd_server( struct flexnbd * flexnbd )
|
||||
struct server *flexnbd_server(struct flexnbd *flexnbd)
|
||||
{
|
||||
NULLCHECK( flexnbd );
|
||||
return flexnbd->serve;
|
||||
NULLCHECK(flexnbd);
|
||||
return flexnbd->serve;
|
||||
}
|
||||
|
||||
void flexnbd_replace_acl( struct flexnbd * flexnbd, struct acl * acl )
|
||||
void flexnbd_replace_acl(struct flexnbd *flexnbd, struct acl *acl)
|
||||
{
|
||||
NULLCHECK( flexnbd );
|
||||
server_replace_acl( flexnbd_server(flexnbd), acl );
|
||||
NULLCHECK(flexnbd);
|
||||
server_replace_acl(flexnbd_server(flexnbd), acl);
|
||||
}
|
||||
|
||||
|
||||
struct status * flexnbd_status_create( struct flexnbd * flexnbd )
|
||||
struct status *flexnbd_status_create(struct flexnbd *flexnbd)
|
||||
{
|
||||
NULLCHECK( flexnbd );
|
||||
struct status * status;
|
||||
NULLCHECK(flexnbd);
|
||||
struct status *status;
|
||||
|
||||
status = status_create( flexnbd_server( flexnbd ) );
|
||||
return status;
|
||||
status = status_create(flexnbd_server(flexnbd));
|
||||
return status;
|
||||
}
|
||||
|
||||
void flexnbd_set_server( struct flexnbd * flexnbd, struct server * serve )
|
||||
void flexnbd_set_server(struct flexnbd *flexnbd, struct server *serve)
|
||||
{
|
||||
NULLCHECK( flexnbd );
|
||||
flexnbd->serve = serve;
|
||||
NULLCHECK(flexnbd);
|
||||
flexnbd->serve = serve;
|
||||
}
|
||||
|
||||
|
||||
/* Get the default_deny of the current server object. */
|
||||
int flexnbd_default_deny( struct flexnbd * flexnbd )
|
||||
int flexnbd_default_deny(struct flexnbd *flexnbd)
|
||||
{
|
||||
NULLCHECK( flexnbd );
|
||||
return server_default_deny( flexnbd->serve );
|
||||
NULLCHECK(flexnbd);
|
||||
return server_default_deny(flexnbd->serve);
|
||||
}
|
||||
|
||||
|
||||
void make_writable( const char * filename )
|
||||
void make_writable(const char *filename)
|
||||
{
|
||||
NULLCHECK( filename );
|
||||
FATAL_IF_NEGATIVE( chmod( filename, S_IWUSR ),
|
||||
"Couldn't chmod %s: %s",
|
||||
filename,
|
||||
strerror( errno ) );
|
||||
NULLCHECK(filename);
|
||||
FATAL_IF_NEGATIVE(chmod(filename, S_IWUSR),
|
||||
"Couldn't chmod %s: %s", filename, strerror(errno));
|
||||
}
|
||||
|
||||
|
||||
int flexnbd_serve( struct flexnbd * flexnbd )
|
||||
int flexnbd_serve(struct flexnbd *flexnbd)
|
||||
{
|
||||
NULLCHECK( flexnbd );
|
||||
int success;
|
||||
struct self_pipe * open_signal = NULL;
|
||||
NULLCHECK(flexnbd);
|
||||
int success;
|
||||
struct self_pipe *open_signal = NULL;
|
||||
|
||||
if ( flexnbd->control ){
|
||||
debug( "Spawning control thread" );
|
||||
flexnbd_spawn_control( flexnbd );
|
||||
open_signal = flexnbd->control->open_signal;
|
||||
}
|
||||
if (flexnbd->control) {
|
||||
debug("Spawning control thread");
|
||||
flexnbd_spawn_control(flexnbd);
|
||||
open_signal = flexnbd->control->open_signal;
|
||||
}
|
||||
|
||||
success = do_serve( flexnbd->serve, open_signal );
|
||||
debug("do_serve success is %d", success );
|
||||
success = do_serve(flexnbd->serve, open_signal);
|
||||
debug("do_serve success is %d", success);
|
||||
|
||||
if ( flexnbd->control ) {
|
||||
debug( "Stopping control thread" );
|
||||
flexnbd_stop_control( flexnbd );
|
||||
debug("Control thread stopped");
|
||||
}
|
||||
if (flexnbd->control) {
|
||||
debug("Stopping control thread");
|
||||
flexnbd_stop_control(flexnbd);
|
||||
debug("Control thread stopped");
|
||||
}
|
||||
|
||||
return success;
|
||||
return success;
|
||||
}
|
||||
|
||||
|
@@ -13,54 +13,51 @@
|
||||
|
||||
/* Carries the "globals". */
|
||||
struct flexnbd {
|
||||
/* Our serve pointer should never be dereferenced outside a
|
||||
* flexnbd_switch_lock/unlock pair.
|
||||
*/
|
||||
struct server * serve;
|
||||
/* Our serve pointer should never be dereferenced outside a
|
||||
* flexnbd_switch_lock/unlock pair.
|
||||
*/
|
||||
struct server *serve;
|
||||
|
||||
/* We only have a control object if a control socket name was
|
||||
* passed on the command line.
|
||||
*/
|
||||
struct control * control;
|
||||
/* We only have a control object if a control socket name was
|
||||
* passed on the command line.
|
||||
*/
|
||||
struct control *control;
|
||||
|
||||
/* File descriptor for a signalfd(2) signal stream. */
|
||||
int signal_fd;
|
||||
/* File descriptor for a signalfd(2) signal stream. */
|
||||
int signal_fd;
|
||||
};
|
||||
|
||||
|
||||
struct flexnbd * flexnbd_create(void);
|
||||
struct flexnbd * flexnbd_create_serving(
|
||||
char* s_ip_address,
|
||||
char* s_port,
|
||||
char* s_file,
|
||||
char* s_ctrl_sock,
|
||||
int default_deny,
|
||||
int acl_entries,
|
||||
char** s_acl_entries,
|
||||
int max_nbd_clients,
|
||||
int use_killswitch);
|
||||
struct flexnbd *flexnbd_create(void);
|
||||
struct flexnbd *flexnbd_create_serving(char *s_ip_address,
|
||||
char *s_port,
|
||||
char *s_file,
|
||||
char *s_ctrl_sock,
|
||||
int default_deny,
|
||||
int acl_entries,
|
||||
char **s_acl_entries,
|
||||
int max_nbd_clients,
|
||||
int use_killswitch);
|
||||
|
||||
struct flexnbd * flexnbd_create_listening(
|
||||
char* s_ip_address,
|
||||
char* s_port,
|
||||
char* s_file,
|
||||
char* s_ctrl_sock,
|
||||
int default_deny,
|
||||
int acl_entries,
|
||||
char** s_acl_entries );
|
||||
struct flexnbd *flexnbd_create_listening(char *s_ip_address,
|
||||
char *s_port,
|
||||
char *s_file,
|
||||
char *s_ctrl_sock,
|
||||
int default_deny,
|
||||
int acl_entries,
|
||||
char **s_acl_entries);
|
||||
|
||||
void flexnbd_destroy( struct flexnbd * );
|
||||
void flexnbd_destroy(struct flexnbd *);
|
||||
enum mirror_state;
|
||||
enum mirror_state flexnbd_get_mirror_state( struct flexnbd * );
|
||||
int flexnbd_default_deny( struct flexnbd * );
|
||||
void flexnbd_set_server( struct flexnbd * flexnbd, struct server * serve );
|
||||
int flexnbd_signal_fd( struct flexnbd * flexnbd );
|
||||
enum mirror_state flexnbd_get_mirror_state(struct flexnbd *);
|
||||
int flexnbd_default_deny(struct flexnbd *);
|
||||
void flexnbd_set_server(struct flexnbd *flexnbd, struct server *serve);
|
||||
int flexnbd_signal_fd(struct flexnbd *flexnbd);
|
||||
|
||||
|
||||
int flexnbd_serve( struct flexnbd * flexnbd );
|
||||
int flexnbd_proxy( struct flexnbd * flexnbd );
|
||||
struct server * flexnbd_server( struct flexnbd * flexnbd );
|
||||
void flexnbd_replace_acl( struct flexnbd * flexnbd, struct acl * acl );
|
||||
struct status * flexnbd_status_create( struct flexnbd * flexnbd );
|
||||
int flexnbd_serve(struct flexnbd *flexnbd);
|
||||
int flexnbd_proxy(struct flexnbd *flexnbd);
|
||||
struct server *flexnbd_server(struct flexnbd *flexnbd);
|
||||
void flexnbd_replace_acl(struct flexnbd *flexnbd, struct acl *acl);
|
||||
struct status *flexnbd_status_create(struct flexnbd *flexnbd);
|
||||
#endif
|
||||
|
||||
|
@@ -4,72 +4,70 @@
|
||||
#include <pthread.h>
|
||||
|
||||
|
||||
struct flexthread_mutex * flexthread_mutex_create(void)
|
||||
struct flexthread_mutex *flexthread_mutex_create(void)
|
||||
{
|
||||
struct flexthread_mutex * ftm =
|
||||
xmalloc( sizeof( struct flexthread_mutex ) );
|
||||
struct flexthread_mutex *ftm =
|
||||
xmalloc(sizeof(struct flexthread_mutex));
|
||||
|
||||
FATAL_UNLESS( 0 == pthread_mutex_init( &ftm->mutex, NULL ),
|
||||
"Mutex initialisation failed" );
|
||||
return ftm;
|
||||
FATAL_UNLESS(0 == pthread_mutex_init(&ftm->mutex, NULL),
|
||||
"Mutex initialisation failed");
|
||||
return ftm;
|
||||
|
||||
}
|
||||
|
||||
|
||||
void flexthread_mutex_destroy( struct flexthread_mutex * ftm )
|
||||
void flexthread_mutex_destroy(struct flexthread_mutex *ftm)
|
||||
{
|
||||
NULLCHECK( ftm );
|
||||
NULLCHECK(ftm);
|
||||
|
||||
if( flexthread_mutex_held( ftm ) ) {
|
||||
flexthread_mutex_unlock( ftm );
|
||||
}
|
||||
else if ( (pthread_t)NULL != ftm->holder ) {
|
||||
/* This "should never happen": if we can try to destroy
|
||||
* a mutex currently held by another thread, there's a
|
||||
* logic bug somewhere. I know the test here is racy,
|
||||
* but there's not a lot we can do about it at this
|
||||
* point.
|
||||
*/
|
||||
fatal( "Attempted to destroy a flexthread_mutex"\
|
||||
" held by another thread!" );
|
||||
}
|
||||
if (flexthread_mutex_held(ftm)) {
|
||||
flexthread_mutex_unlock(ftm);
|
||||
} else if ((pthread_t) NULL != ftm->holder) {
|
||||
/* This "should never happen": if we can try to destroy
|
||||
* a mutex currently held by another thread, there's a
|
||||
* logic bug somewhere. I know the test here is racy,
|
||||
* but there's not a lot we can do about it at this
|
||||
* point.
|
||||
*/
|
||||
fatal("Attempted to destroy a flexthread_mutex"
|
||||
" held by another thread!");
|
||||
}
|
||||
|
||||
FATAL_UNLESS( 0 == pthread_mutex_destroy( &ftm->mutex ),
|
||||
"Mutex destroy failed" );
|
||||
free( ftm );
|
||||
FATAL_UNLESS(0 == pthread_mutex_destroy(&ftm->mutex),
|
||||
"Mutex destroy failed");
|
||||
free(ftm);
|
||||
}
|
||||
|
||||
|
||||
int flexthread_mutex_lock( struct flexthread_mutex * ftm )
|
||||
int flexthread_mutex_lock(struct flexthread_mutex *ftm)
|
||||
{
|
||||
NULLCHECK( ftm );
|
||||
NULLCHECK(ftm);
|
||||
|
||||
int failure = pthread_mutex_lock( &ftm->mutex );
|
||||
if ( 0 == failure ) {
|
||||
ftm->holder = pthread_self();
|
||||
}
|
||||
int failure = pthread_mutex_lock(&ftm->mutex);
|
||||
if (0 == failure) {
|
||||
ftm->holder = pthread_self();
|
||||
}
|
||||
|
||||
return failure;
|
||||
return failure;
|
||||
}
|
||||
|
||||
|
||||
int flexthread_mutex_unlock( struct flexthread_mutex * ftm )
|
||||
int flexthread_mutex_unlock(struct flexthread_mutex *ftm)
|
||||
{
|
||||
NULLCHECK( ftm );
|
||||
NULLCHECK(ftm);
|
||||
|
||||
pthread_t orig = ftm->holder;
|
||||
ftm->holder = (pthread_t)NULL;
|
||||
int failure = pthread_mutex_unlock( &ftm->mutex );
|
||||
if ( 0 != failure ) {
|
||||
ftm->holder = orig;
|
||||
}
|
||||
return failure;
|
||||
pthread_t orig = ftm->holder;
|
||||
ftm->holder = (pthread_t) NULL;
|
||||
int failure = pthread_mutex_unlock(&ftm->mutex);
|
||||
if (0 != failure) {
|
||||
ftm->holder = orig;
|
||||
}
|
||||
return failure;
|
||||
}
|
||||
|
||||
|
||||
int flexthread_mutex_held( struct flexthread_mutex * ftm )
|
||||
int flexthread_mutex_held(struct flexthread_mutex *ftm)
|
||||
{
|
||||
NULLCHECK( ftm );
|
||||
return pthread_self() == ftm->holder;
|
||||
NULLCHECK(ftm);
|
||||
return pthread_self() == ftm->holder;
|
||||
}
|
||||
|
||||
|
@@ -15,15 +15,15 @@
|
||||
*/
|
||||
|
||||
struct flexthread_mutex {
|
||||
pthread_mutex_t mutex;
|
||||
pthread_t holder;
|
||||
pthread_mutex_t mutex;
|
||||
pthread_t holder;
|
||||
};
|
||||
|
||||
struct flexthread_mutex * flexthread_mutex_create(void);
|
||||
void flexthread_mutex_destroy( struct flexthread_mutex * );
|
||||
struct flexthread_mutex *flexthread_mutex_create(void);
|
||||
void flexthread_mutex_destroy(struct flexthread_mutex *);
|
||||
|
||||
int flexthread_mutex_lock( struct flexthread_mutex * );
|
||||
int flexthread_mutex_unlock( struct flexthread_mutex * );
|
||||
int flexthread_mutex_held( struct flexthread_mutex * );
|
||||
int flexthread_mutex_lock(struct flexthread_mutex *);
|
||||
int flexthread_mutex_unlock(struct flexthread_mutex *);
|
||||
int flexthread_mutex_held(struct flexthread_mutex *);
|
||||
|
||||
#endif
|
||||
|
@@ -3,75 +3,75 @@
|
||||
|
||||
#include <pthread.h>
|
||||
|
||||
struct mbox * mbox_create( void )
|
||||
struct mbox *mbox_create(void)
|
||||
{
|
||||
struct mbox * mbox = xmalloc( sizeof( struct mbox ) );
|
||||
FATAL_UNLESS( 0 == pthread_cond_init( &mbox->filled_cond, NULL ),
|
||||
"Failed to initialise a condition variable" );
|
||||
FATAL_UNLESS( 0 == pthread_cond_init( &mbox->emptied_cond, NULL ),
|
||||
"Failed to initialise a condition variable" );
|
||||
FATAL_UNLESS( 0 == pthread_mutex_init( &mbox->mutex, NULL ),
|
||||
"Failed to initialise a mutex" );
|
||||
return mbox;
|
||||
struct mbox *mbox = xmalloc(sizeof(struct mbox));
|
||||
FATAL_UNLESS(0 == pthread_cond_init(&mbox->filled_cond, NULL),
|
||||
"Failed to initialise a condition variable");
|
||||
FATAL_UNLESS(0 == pthread_cond_init(&mbox->emptied_cond, NULL),
|
||||
"Failed to initialise a condition variable");
|
||||
FATAL_UNLESS(0 == pthread_mutex_init(&mbox->mutex, NULL),
|
||||
"Failed to initialise a mutex");
|
||||
return mbox;
|
||||
}
|
||||
|
||||
void mbox_post( struct mbox * mbox, void * contents )
|
||||
void mbox_post(struct mbox *mbox, void *contents)
|
||||
{
|
||||
pthread_mutex_lock( &mbox->mutex );
|
||||
{
|
||||
if (mbox->full){
|
||||
pthread_cond_wait( &mbox->emptied_cond, &mbox->mutex );
|
||||
}
|
||||
mbox->contents = contents;
|
||||
mbox->full = 1;
|
||||
while( 0 != pthread_cond_signal( &mbox->filled_cond ) );
|
||||
pthread_mutex_lock(&mbox->mutex);
|
||||
{
|
||||
if (mbox->full) {
|
||||
pthread_cond_wait(&mbox->emptied_cond, &mbox->mutex);
|
||||
}
|
||||
pthread_mutex_unlock( &mbox->mutex );
|
||||
mbox->contents = contents;
|
||||
mbox->full = 1;
|
||||
while (0 != pthread_cond_signal(&mbox->filled_cond));
|
||||
}
|
||||
pthread_mutex_unlock(&mbox->mutex);
|
||||
}
|
||||
|
||||
|
||||
void * mbox_contents( struct mbox * mbox )
|
||||
void *mbox_contents(struct mbox *mbox)
|
||||
{
|
||||
return mbox->contents;
|
||||
return mbox->contents;
|
||||
}
|
||||
|
||||
|
||||
int mbox_is_full( struct mbox * mbox )
|
||||
int mbox_is_full(struct mbox *mbox)
|
||||
{
|
||||
return mbox->full;
|
||||
return mbox->full;
|
||||
}
|
||||
|
||||
|
||||
void * mbox_receive( struct mbox * mbox )
|
||||
void *mbox_receive(struct mbox *mbox)
|
||||
{
|
||||
NULLCHECK( mbox );
|
||||
void * result;
|
||||
NULLCHECK(mbox);
|
||||
void *result;
|
||||
|
||||
pthread_mutex_lock( &mbox->mutex );
|
||||
{
|
||||
if ( !mbox->full ) {
|
||||
pthread_cond_wait( &mbox->filled_cond, &mbox->mutex );
|
||||
}
|
||||
mbox->full = 0;
|
||||
result = mbox->contents;
|
||||
mbox->contents = NULL;
|
||||
|
||||
while( 0 != pthread_cond_signal( &mbox->emptied_cond));
|
||||
pthread_mutex_lock(&mbox->mutex);
|
||||
{
|
||||
if (!mbox->full) {
|
||||
pthread_cond_wait(&mbox->filled_cond, &mbox->mutex);
|
||||
}
|
||||
pthread_mutex_unlock( &mbox->mutex );
|
||||
mbox->full = 0;
|
||||
result = mbox->contents;
|
||||
mbox->contents = NULL;
|
||||
|
||||
return result;
|
||||
while (0 != pthread_cond_signal(&mbox->emptied_cond));
|
||||
}
|
||||
pthread_mutex_unlock(&mbox->mutex);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
void mbox_destroy( struct mbox * mbox )
|
||||
void mbox_destroy(struct mbox *mbox)
|
||||
{
|
||||
NULLCHECK( mbox );
|
||||
NULLCHECK(mbox);
|
||||
|
||||
while( 0 != pthread_cond_destroy( &mbox->emptied_cond ) );
|
||||
while( 0 != pthread_cond_destroy( &mbox->filled_cond ) );
|
||||
while (0 != pthread_cond_destroy(&mbox->emptied_cond));
|
||||
while (0 != pthread_cond_destroy(&mbox->filled_cond));
|
||||
|
||||
while( 0 != pthread_mutex_destroy( &mbox->mutex ) );
|
||||
while (0 != pthread_mutex_destroy(&mbox->mutex));
|
||||
|
||||
free( mbox );
|
||||
free(mbox);
|
||||
}
|
||||
|
@@ -14,42 +14,42 @@
|
||||
|
||||
|
||||
struct mbox {
|
||||
void * contents;
|
||||
void *contents;
|
||||
|
||||
/** Marker to tell us if there's content in the box.
|
||||
* Keeping this separate allows us to use NULL for the contents.
|
||||
*/
|
||||
int full;
|
||||
int full;
|
||||
|
||||
/** This gets signaled by mbox_post, and waited on by
|
||||
* mbox_receive */
|
||||
pthread_cond_t filled_cond;
|
||||
pthread_cond_t filled_cond;
|
||||
/** This is signaled by mbox_receive, and waited on by mbox_post */
|
||||
pthread_cond_t emptied_cond;
|
||||
pthread_mutex_t mutex;
|
||||
pthread_cond_t emptied_cond;
|
||||
pthread_mutex_t mutex;
|
||||
};
|
||||
|
||||
|
||||
/* Create an mbox. */
|
||||
struct mbox * mbox_create(void);
|
||||
struct mbox *mbox_create(void);
|
||||
|
||||
/* Put something in the mbox, blocking if it's already full.
|
||||
* That something can be NULL if you want.
|
||||
*/
|
||||
void mbox_post( struct mbox *, void *);
|
||||
void mbox_post(struct mbox *, void *);
|
||||
|
||||
/* See what's in the mbox. This isn't thread-safe. */
|
||||
void * mbox_contents( struct mbox *);
|
||||
void *mbox_contents(struct mbox *);
|
||||
|
||||
/* See if anything has been put into the mbox. This isn't thread-safe.
|
||||
* */
|
||||
int mbox_is_full( struct mbox *);
|
||||
int mbox_is_full(struct mbox *);
|
||||
|
||||
/* Get the contents from the mbox, blocking if there's nothing there. */
|
||||
void * mbox_receive( struct mbox *);
|
||||
void *mbox_receive(struct mbox *);
|
||||
|
||||
/* Free the mbox and destroy the associated pthread bits. */
|
||||
void mbox_destroy( struct mbox *);
|
||||
void mbox_destroy(struct mbox *);
|
||||
|
||||
|
||||
#endif
|
||||
|
1579
src/server/mirror.c
1579
src/server/mirror.c
File diff suppressed because it is too large
Load Diff
@@ -58,65 +58,65 @@ enum mirror_state;
|
||||
#define MS_REQUEST_LIMIT_SECS_F 60.0
|
||||
|
||||
enum mirror_finish_action {
|
||||
ACTION_EXIT,
|
||||
ACTION_UNLINK,
|
||||
ACTION_NOTHING
|
||||
ACTION_EXIT,
|
||||
ACTION_UNLINK,
|
||||
ACTION_NOTHING
|
||||
};
|
||||
|
||||
enum mirror_state {
|
||||
MS_UNKNOWN,
|
||||
MS_INIT,
|
||||
MS_GO,
|
||||
MS_ABANDONED,
|
||||
MS_DONE,
|
||||
MS_FAIL_CONNECT,
|
||||
MS_FAIL_REJECTED,
|
||||
MS_FAIL_NO_HELLO,
|
||||
MS_FAIL_SIZE_MISMATCH
|
||||
MS_UNKNOWN,
|
||||
MS_INIT,
|
||||
MS_GO,
|
||||
MS_ABANDONED,
|
||||
MS_DONE,
|
||||
MS_FAIL_CONNECT,
|
||||
MS_FAIL_REJECTED,
|
||||
MS_FAIL_NO_HELLO,
|
||||
MS_FAIL_SIZE_MISMATCH
|
||||
};
|
||||
|
||||
struct mirror {
|
||||
pthread_t thread;
|
||||
pthread_t thread;
|
||||
|
||||
/* Signal to this then join the thread if you want to abandon mirroring */
|
||||
struct self_pipe * abandon_signal;
|
||||
/* Signal to this then join the thread if you want to abandon mirroring */
|
||||
struct self_pipe *abandon_signal;
|
||||
|
||||
union mysockaddr * connect_to;
|
||||
union mysockaddr * connect_from;
|
||||
int client;
|
||||
const char * filename;
|
||||
union mysockaddr *connect_to;
|
||||
union mysockaddr *connect_from;
|
||||
int client;
|
||||
const char *filename;
|
||||
|
||||
/* Limiter, used to restrict migration speed Only dirty bytes (those going
|
||||
* over the network) are considered */
|
||||
uint64_t max_bytes_per_second;
|
||||
/* Limiter, used to restrict migration speed Only dirty bytes (those going
|
||||
* over the network) are considered */
|
||||
uint64_t max_bytes_per_second;
|
||||
|
||||
enum mirror_finish_action action_at_finish;
|
||||
enum mirror_finish_action action_at_finish;
|
||||
|
||||
char *mapped;
|
||||
char *mapped;
|
||||
|
||||
/* We need to send every byte at least once; we do so by */
|
||||
uint64_t offset;
|
||||
/* We need to send every byte at least once; we do so by */
|
||||
uint64_t offset;
|
||||
|
||||
enum mirror_state commit_state;
|
||||
enum mirror_state commit_state;
|
||||
|
||||
/* commit_signal is sent immediately after attempting to connect
|
||||
* and checking the remote size, whether successful or not.
|
||||
*/
|
||||
struct mbox * commit_signal;
|
||||
/* commit_signal is sent immediately after attempting to connect
|
||||
* and checking the remote size, whether successful or not.
|
||||
*/
|
||||
struct mbox *commit_signal;
|
||||
|
||||
/* The time (from monotonic_time_ms()) the migration was started. Can be
|
||||
* used to calculate bps, etc. */
|
||||
uint64_t migration_started;
|
||||
/* The time (from monotonic_time_ms()) the migration was started. Can be
|
||||
* used to calculate bps, etc. */
|
||||
uint64_t migration_started;
|
||||
|
||||
/* Running count of all bytes we've transferred */
|
||||
uint64_t all_dirty;
|
||||
/* Running count of all bytes we've transferred */
|
||||
uint64_t all_dirty;
|
||||
};
|
||||
|
||||
|
||||
struct mirror_super {
|
||||
struct mirror * mirror;
|
||||
pthread_t thread;
|
||||
struct mbox * state_mbox;
|
||||
struct mirror *mirror;
|
||||
pthread_t thread;
|
||||
struct mbox *state_mbox;
|
||||
};
|
||||
|
||||
|
||||
@@ -127,15 +127,13 @@ struct mirror_super {
|
||||
struct server;
|
||||
struct flexnbd;
|
||||
|
||||
struct mirror_super * mirror_super_create(
|
||||
const char * filename,
|
||||
union mysockaddr * connect_to,
|
||||
union mysockaddr * connect_from,
|
||||
uint64_t max_Bps,
|
||||
enum mirror_finish_action action_at_finish,
|
||||
struct mbox * state_mbox
|
||||
);
|
||||
void * mirror_super_runner( void * serve_uncast );
|
||||
struct mirror_super *mirror_super_create(const char *filename,
|
||||
union mysockaddr *connect_to,
|
||||
union mysockaddr *connect_from,
|
||||
uint64_t max_Bps,
|
||||
enum mirror_finish_action
|
||||
action_at_finish,
|
||||
struct mbox *state_mbox);
|
||||
void *mirror_super_runner(void *serve_uncast);
|
||||
|
||||
#endif
|
||||
|
||||
|
1481
src/server/mode.c
1481
src/server/mode.c
File diff suppressed because it is too large
Load Diff
1210
src/server/serve.c
1210
src/server/serve.c
File diff suppressed because it is too large
Load Diff
@@ -3,20 +3,20 @@
|
||||
|
||||
#include <sys/types.h>
|
||||
#include <unistd.h>
|
||||
#include <signal.h> /* for sig_atomic_t */
|
||||
#include <signal.h> /* for sig_atomic_t */
|
||||
|
||||
#include "flexnbd.h"
|
||||
#include "parse.h"
|
||||
#include "acl.h"
|
||||
|
||||
|
||||
static const int block_allocation_resolution = 4096;//128<<10;
|
||||
static const int block_allocation_resolution = 4096; //128<<10;
|
||||
|
||||
|
||||
struct client_tbl_entry {
|
||||
pthread_t thread;
|
||||
union mysockaddr address;
|
||||
struct client * client;
|
||||
pthread_t thread;
|
||||
union mysockaddr address;
|
||||
struct client *client;
|
||||
};
|
||||
|
||||
|
||||
@@ -25,146 +25,143 @@ struct client_tbl_entry {
|
||||
#define CLIENT_KEEPALIVE_INTVL 10
|
||||
#define CLIENT_KEEPALIVE_PROBES 3
|
||||
struct server {
|
||||
/* The flexnbd wrapper this server is attached to */
|
||||
struct flexnbd * flexnbd;
|
||||
/* The flexnbd wrapper this server is attached to */
|
||||
struct flexnbd *flexnbd;
|
||||
|
||||
/** address/port to bind to */
|
||||
union mysockaddr bind_to;
|
||||
union mysockaddr bind_to;
|
||||
/** (static) file name to serve */
|
||||
char* filename;
|
||||
char *filename;
|
||||
/** TCP backlog for listen() */
|
||||
int tcp_backlog;
|
||||
int tcp_backlog;
|
||||
/** (static) file name of UNIX control socket (or NULL if none) */
|
||||
char* control_socket_name;
|
||||
char *control_socket_name;
|
||||
/** size of file */
|
||||
uint64_t size;
|
||||
uint64_t size;
|
||||
|
||||
/** to interrupt accept loop and clients, write() to close_signal[1] */
|
||||
struct self_pipe * close_signal;
|
||||
struct self_pipe *close_signal;
|
||||
|
||||
/** access control list */
|
||||
struct acl * acl;
|
||||
struct acl *acl;
|
||||
/** acl_updated_signal will be signalled after the acl struct
|
||||
* has been replaced
|
||||
*/
|
||||
struct self_pipe * acl_updated_signal;
|
||||
struct self_pipe *acl_updated_signal;
|
||||
|
||||
/* Claimed around any updates to the ACL. */
|
||||
struct flexthread_mutex * l_acl;
|
||||
/* Claimed around any updates to the ACL. */
|
||||
struct flexthread_mutex *l_acl;
|
||||
|
||||
/* Claimed around starting a mirror so that it doesn't race with
|
||||
* shutting down on a SIGTERM. */
|
||||
struct flexthread_mutex * l_start_mirror;
|
||||
/* Claimed around starting a mirror so that it doesn't race with
|
||||
* shutting down on a SIGTERM. */
|
||||
struct flexthread_mutex *l_start_mirror;
|
||||
|
||||
struct mirror* mirror;
|
||||
struct mirror_super * mirror_super;
|
||||
/* This is used to stop the mirror from starting after we
|
||||
* receive a SIGTERM */
|
||||
int mirror_can_start;
|
||||
struct mirror *mirror;
|
||||
struct mirror_super *mirror_super;
|
||||
/* This is used to stop the mirror from starting after we
|
||||
* receive a SIGTERM */
|
||||
int mirror_can_start;
|
||||
|
||||
int server_fd;
|
||||
int control_fd;
|
||||
int server_fd;
|
||||
int control_fd;
|
||||
|
||||
/* the allocation_map keeps track of which blocks in the backing file
|
||||
* have been allocated, or part-allocated on disc, with unallocated
|
||||
* blocks presumed to contain zeroes (i.e. represented as sparse files
|
||||
* by the filesystem). We can use this information when receiving
|
||||
* incoming writes, and avoid writing zeroes to unallocated sections
|
||||
* of the file which would needlessly increase disc usage. This
|
||||
* bitmap will start at all-zeroes for an empty file, and tend towards
|
||||
* all-ones as the file is written to (i.e. we assume that allocated
|
||||
* blocks can never become unallocated again, as is the case with ext3
|
||||
* at least).
|
||||
*/
|
||||
struct bitset * allocation_map;
|
||||
/* when starting up, this thread builds the allocation_map */
|
||||
pthread_t allocation_map_builder_thread;
|
||||
/* the allocation_map keeps track of which blocks in the backing file
|
||||
* have been allocated, or part-allocated on disc, with unallocated
|
||||
* blocks presumed to contain zeroes (i.e. represented as sparse files
|
||||
* by the filesystem). We can use this information when receiving
|
||||
* incoming writes, and avoid writing zeroes to unallocated sections
|
||||
* of the file which would needlessly increase disc usage. This
|
||||
* bitmap will start at all-zeroes for an empty file, and tend towards
|
||||
* all-ones as the file is written to (i.e. we assume that allocated
|
||||
* blocks can never become unallocated again, as is the case with ext3
|
||||
* at least).
|
||||
*/
|
||||
struct bitset *allocation_map;
|
||||
/* when starting up, this thread builds the allocation_map */
|
||||
pthread_t allocation_map_builder_thread;
|
||||
|
||||
/* when the thread has finished, it sets this to 1 */
|
||||
volatile sig_atomic_t allocation_map_built;
|
||||
volatile sig_atomic_t allocation_map_not_built;
|
||||
/* when the thread has finished, it sets this to 1 */
|
||||
volatile sig_atomic_t allocation_map_built;
|
||||
volatile sig_atomic_t allocation_map_not_built;
|
||||
|
||||
int max_nbd_clients;
|
||||
struct client_tbl_entry *nbd_client;
|
||||
int max_nbd_clients;
|
||||
struct client_tbl_entry *nbd_client;
|
||||
|
||||
/** Should clients use the killswitch? */
|
||||
int use_killswitch;
|
||||
int use_killswitch;
|
||||
|
||||
/** If this isn't set, newly accepted clients will be closed immediately */
|
||||
int allow_new_clients;
|
||||
int allow_new_clients;
|
||||
|
||||
/* Marker for whether this server has control over the data in
|
||||
* the file, or if we're waiting to receive it from an inbound
|
||||
* migration which hasn't yet finished.
|
||||
*
|
||||
* It's the value which controls the exit status of a serve or
|
||||
* listen process.
|
||||
*/
|
||||
int success;
|
||||
/* Marker for whether this server has control over the data in
|
||||
* the file, or if we're waiting to receive it from an inbound
|
||||
* migration which hasn't yet finished.
|
||||
*
|
||||
* It's the value which controls the exit status of a serve or
|
||||
* listen process.
|
||||
*/
|
||||
int success;
|
||||
};
|
||||
|
||||
struct server * server_create(
|
||||
struct flexnbd * flexnbd,
|
||||
char* s_ip_address,
|
||||
char* s_port,
|
||||
char* s_file,
|
||||
int default_deny,
|
||||
int acl_entries,
|
||||
char** s_acl_entries,
|
||||
int max_nbd_clients,
|
||||
int use_killswitch,
|
||||
int success );
|
||||
void server_destroy( struct server * );
|
||||
int server_is_closed(struct server* serve);
|
||||
void serve_signal_close( struct server *serve );
|
||||
void serve_wait_for_close( struct server * serve );
|
||||
void server_replace_acl( struct server *serve, struct acl * acl);
|
||||
void server_control_arrived( struct server *serve );
|
||||
int server_is_in_control( struct server *serve );
|
||||
int server_default_deny( struct server * serve );
|
||||
int server_acl_locked( struct server * serve );
|
||||
void server_lock_acl( struct server *serve );
|
||||
void server_unlock_acl( struct server *serve );
|
||||
void server_lock_start_mirror( struct server *serve );
|
||||
void server_unlock_start_mirror( struct server *serve );
|
||||
int server_is_mirroring( struct server * serve );
|
||||
struct server *server_create(struct flexnbd *flexnbd,
|
||||
char *s_ip_address,
|
||||
char *s_port,
|
||||
char *s_file,
|
||||
int default_deny,
|
||||
int acl_entries,
|
||||
char **s_acl_entries,
|
||||
int max_nbd_clients,
|
||||
int use_killswitch, int success);
|
||||
void server_destroy(struct server *);
|
||||
int server_is_closed(struct server *serve);
|
||||
void serve_signal_close(struct server *serve);
|
||||
void serve_wait_for_close(struct server *serve);
|
||||
void server_replace_acl(struct server *serve, struct acl *acl);
|
||||
void server_control_arrived(struct server *serve);
|
||||
int server_is_in_control(struct server *serve);
|
||||
int server_default_deny(struct server *serve);
|
||||
int server_acl_locked(struct server *serve);
|
||||
void server_lock_acl(struct server *serve);
|
||||
void server_unlock_acl(struct server *serve);
|
||||
void server_lock_start_mirror(struct server *serve);
|
||||
void server_unlock_start_mirror(struct server *serve);
|
||||
int server_is_mirroring(struct server *serve);
|
||||
|
||||
uint64_t server_mirror_bytes_remaining( struct server * serve );
|
||||
uint64_t server_mirror_eta( struct server * serve );
|
||||
uint64_t server_mirror_bps( struct server * serve );
|
||||
uint64_t server_mirror_bytes_remaining(struct server *serve);
|
||||
uint64_t server_mirror_eta(struct server *serve);
|
||||
uint64_t server_mirror_bps(struct server *serve);
|
||||
|
||||
void server_abandon_mirror( struct server * serve );
|
||||
void server_prevent_mirror_start( struct server *serve );
|
||||
void server_allow_mirror_start( struct server *serve );
|
||||
int server_mirror_can_start( struct server *serve );
|
||||
void server_abandon_mirror(struct server *serve);
|
||||
void server_prevent_mirror_start(struct server *serve);
|
||||
void server_allow_mirror_start(struct server *serve);
|
||||
int server_mirror_can_start(struct server *serve);
|
||||
|
||||
/* These three functions are used by mirror around the final pass, to close
|
||||
* existing clients and prevent new ones from being around
|
||||
*/
|
||||
|
||||
void server_forbid_new_clients( struct server *serve );
|
||||
void server_close_clients( struct server *serve );
|
||||
void server_join_clients( struct server *serve );
|
||||
void server_allow_new_clients( struct server *serve );
|
||||
void server_forbid_new_clients(struct server *serve);
|
||||
void server_close_clients(struct server *serve);
|
||||
void server_join_clients(struct server *serve);
|
||||
void server_allow_new_clients(struct server *serve);
|
||||
|
||||
/* Returns a count (ish) of the number of currently-running client threads */
|
||||
int server_count_clients( struct server *params );
|
||||
int server_count_clients(struct server *params);
|
||||
|
||||
void server_unlink( struct server * serve );
|
||||
void server_unlink(struct server *serve);
|
||||
|
||||
int do_serve( struct server *, struct self_pipe * );
|
||||
int do_serve(struct server *, struct self_pipe *);
|
||||
|
||||
struct mode_readwrite_params {
|
||||
union mysockaddr connect_to;
|
||||
union mysockaddr connect_from;
|
||||
union mysockaddr connect_to;
|
||||
union mysockaddr connect_from;
|
||||
|
||||
uint64_t from;
|
||||
uint32_t len;
|
||||
uint64_t from;
|
||||
uint32_t len;
|
||||
|
||||
int data_fd;
|
||||
int client;
|
||||
int data_fd;
|
||||
int client;
|
||||
};
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
@@ -2,41 +2,44 @@
|
||||
#include "serve.h"
|
||||
#include "util.h"
|
||||
|
||||
struct status * status_create( struct server * serve )
|
||||
struct status *status_create(struct server *serve)
|
||||
{
|
||||
NULLCHECK( serve );
|
||||
struct status * status;
|
||||
NULLCHECK(serve);
|
||||
struct status *status;
|
||||
|
||||
status = xmalloc( sizeof( struct status ) );
|
||||
status->pid = getpid();
|
||||
status->size = serve->size;
|
||||
status->has_control = serve->success;
|
||||
status = xmalloc(sizeof(struct status));
|
||||
status->pid = getpid();
|
||||
status->size = serve->size;
|
||||
status->has_control = serve->success;
|
||||
|
||||
status->clients_allowed = serve->allow_new_clients;
|
||||
status->num_clients = server_count_clients( serve );
|
||||
status->clients_allowed = serve->allow_new_clients;
|
||||
status->num_clients = server_count_clients(serve);
|
||||
|
||||
server_lock_start_mirror( serve );
|
||||
server_lock_start_mirror(serve);
|
||||
|
||||
status->is_mirroring = NULL != serve->mirror;
|
||||
if ( status->is_mirroring ) {
|
||||
status->migration_duration = monotonic_time_ms();
|
||||
status->is_mirroring = NULL != serve->mirror;
|
||||
if (status->is_mirroring) {
|
||||
status->migration_duration = monotonic_time_ms();
|
||||
|
||||
if ( ( serve->mirror->migration_started ) < status->migration_duration ) {
|
||||
status->migration_duration -= serve->mirror->migration_started;
|
||||
} else {
|
||||
status->migration_duration = 0;
|
||||
}
|
||||
status->migration_duration /= 1000;
|
||||
status->migration_speed = server_mirror_bps( serve );
|
||||
status->migration_speed_limit = serve->mirror->max_bytes_per_second;
|
||||
|
||||
status->migration_seconds_left = server_mirror_eta( serve );
|
||||
status->migration_bytes_left = server_mirror_bytes_remaining( serve );
|
||||
if ((serve->mirror->migration_started) <
|
||||
status->migration_duration) {
|
||||
status->migration_duration -= serve->mirror->migration_started;
|
||||
} else {
|
||||
status->migration_duration = 0;
|
||||
}
|
||||
status->migration_duration /= 1000;
|
||||
status->migration_speed = server_mirror_bps(serve);
|
||||
status->migration_speed_limit =
|
||||
serve->mirror->max_bytes_per_second;
|
||||
|
||||
server_unlock_start_mirror( serve );
|
||||
status->migration_seconds_left = server_mirror_eta(serve);
|
||||
status->migration_bytes_left =
|
||||
server_mirror_bytes_remaining(serve);
|
||||
}
|
||||
|
||||
return status;
|
||||
server_unlock_start_mirror(serve);
|
||||
|
||||
return status;
|
||||
|
||||
}
|
||||
|
||||
@@ -48,33 +51,32 @@ struct status * status_create( struct server * serve )
|
||||
#define PRINT_UINT64( var ) \
|
||||
do{dprintf( fd, #var "=%"PRIu64" ", status->var );}while(0)
|
||||
|
||||
int status_write( struct status * status, int fd )
|
||||
int status_write(struct status *status, int fd)
|
||||
{
|
||||
PRINT_INT( pid );
|
||||
PRINT_UINT64( size );
|
||||
PRINT_BOOL( is_mirroring );
|
||||
PRINT_BOOL( clients_allowed );
|
||||
PRINT_INT( num_clients );
|
||||
PRINT_BOOL( has_control );
|
||||
PRINT_INT(pid);
|
||||
PRINT_UINT64(size);
|
||||
PRINT_BOOL(is_mirroring);
|
||||
PRINT_BOOL(clients_allowed);
|
||||
PRINT_INT(num_clients);
|
||||
PRINT_BOOL(has_control);
|
||||
|
||||
if ( status->is_mirroring ) {
|
||||
PRINT_UINT64( migration_speed );
|
||||
PRINT_UINT64( migration_duration );
|
||||
PRINT_UINT64( migration_seconds_left );
|
||||
PRINT_UINT64( migration_bytes_left );
|
||||
if ( status->migration_speed_limit < UINT64_MAX ) {
|
||||
PRINT_UINT64( migration_speed_limit );
|
||||
};
|
||||
}
|
||||
if (status->is_mirroring) {
|
||||
PRINT_UINT64(migration_speed);
|
||||
PRINT_UINT64(migration_duration);
|
||||
PRINT_UINT64(migration_seconds_left);
|
||||
PRINT_UINT64(migration_bytes_left);
|
||||
if (status->migration_speed_limit < UINT64_MAX) {
|
||||
PRINT_UINT64(migration_speed_limit);
|
||||
};
|
||||
}
|
||||
|
||||
dprintf(fd, "\n");
|
||||
return 1;
|
||||
dprintf(fd, "\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
void status_destroy( struct status * status )
|
||||
void status_destroy(struct status *status)
|
||||
{
|
||||
NULLCHECK( status );
|
||||
free( status );
|
||||
NULLCHECK(status);
|
||||
free(status);
|
||||
}
|
||||
|
||||
|
@@ -75,30 +75,29 @@
|
||||
#include <unistd.h>
|
||||
|
||||
struct status {
|
||||
pid_t pid;
|
||||
uint64_t size;
|
||||
int has_control;
|
||||
int clients_allowed;
|
||||
int num_clients;
|
||||
int is_mirroring;
|
||||
pid_t pid;
|
||||
uint64_t size;
|
||||
int has_control;
|
||||
int clients_allowed;
|
||||
int num_clients;
|
||||
int is_mirroring;
|
||||
|
||||
uint64_t migration_duration;
|
||||
uint64_t migration_speed;
|
||||
uint64_t migration_speed_limit;
|
||||
uint64_t migration_seconds_left;
|
||||
uint64_t migration_bytes_left;
|
||||
uint64_t migration_duration;
|
||||
uint64_t migration_speed;
|
||||
uint64_t migration_speed_limit;
|
||||
uint64_t migration_seconds_left;
|
||||
uint64_t migration_bytes_left;
|
||||
};
|
||||
|
||||
/** Create a status object for the given server. */
|
||||
struct status * status_create( struct server * );
|
||||
struct status *status_create(struct server *);
|
||||
|
||||
/** Output the given status object to the given file descriptot */
|
||||
int status_write( struct status *, int fd );
|
||||
int status_write(struct status *, int fd);
|
||||
|
||||
/** Free the status object */
|
||||
void status_destroy( struct status * );
|
||||
void status_destroy(struct status *);
|
||||
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
Reference in New Issue
Block a user