Files
netlinkrb/lib/netlink/message.rb

301 lines
10 KiB
Ruby

require 'netlink/constants'
require 'ipaddr'
module Netlink
EMPTY_STRING = "".freeze #:nodoc:
EMPTY_ARRAY = [].freeze #:nodoc:
# This is the base class from which all Netlink messages are derived.
# To define a new Netlink message, make a subclass and then call the
# "field" metaprogramming method to define the parts of the message, in
# order. The "code" metaprogramming method defines which incoming message
# types are to be built using this structure.
#
# You can then instantiate the message by calling 'new' as usual. It is
# usually most convenient to pass in a hash of values when creating a message.
#
# class Foo < Message
# code 10, 11, 12
# field :foo, :char, :default=>255
# field :bar, :long
# end
# msg = Foo.new(:bar => 123) # or Foo.new("bar" => 123)
# msg.bar = 456
# msg2 = Foo.new(:qux => 999) # error: no method "qux="
# msg2 = Foo.new(msg) # cloning an existing message
#
# Use RtattrMessage instead for messages which are followed by variable rtattrs.
class Message
TYPE_INFO = {} #:nodoc
# Define a new type for use with field and rtattr. You supply the
# symbolic name for the type, and a set of options. field supports only:
# :pattern => "str" # format string for Array#pack / String#unpack
# :default => val # default (if not 0)
# rtattr optionally also supports:
# :pack => lambda # code to convert value to binary string
# :unpack => lambda # code to convert binary string to value
def self.define_type(name, opt)
TYPE_INFO[name] = opt
end
define_type :uchar, :pattern => "C"
define_type :uint16, :pattern => "S"
define_type :uint32, :pattern => "L"
define_type :char, :pattern => "c"
define_type :int16, :pattern => "s"
define_type :int32, :pattern => "l"
define_type :ushort, :pattern => "S_"
define_type :uint, :pattern => "I"
define_type :ulong, :pattern => "L_"
define_type :short, :pattern => "s_"
define_type :int, :pattern => "i"
define_type :long, :pattern => "l_"
define_type :binary, :pattern => "a*", :default => EMPTY_STRING
define_type :cstring, :pattern => "Z*", :default => EMPTY_STRING
# L2 addresses are presented as ASCII hex. You may optionally include
# colons, hyphens or dots.
# Link.new(:address => "00:11:22:33:44:55") # this is OK
define_type :l2addr,
:pack => lambda { |val,obj| [val.delete(":-.")].pack("H*") },
:unpack => lambda { |val,obj| val.unpack("H*").first }
# L3 addresses are presented as IPAddr objects where possible. When
# setting an address, you may provide an IPAddr object, an IP in readable
# string form, or an integer. All of the following are acceptable:
# Addr.new(:family=>Socket::AF_INET, :address=>IPAddr.new("1.2.3.4"))
# Addr.new(:family=>Socket::AF_INET, :address=>"1.2.3.4")
# Addr.new(:family=>Socket::AF_INET, :address=>0x01020304)
# Furthermore, the 'family' will be set automatically if it is unset
# at the time the message is encoded:
# Addr.new(:address=>IPAddr.new("1.2.3.4")).to_s # ok
# Addr.new(:address=>"1.2.3.4").to_s # ok
# Addr.new(:address=>0x01020304).to_s # error, unknown family
# Addr.new(:address=>"1.2.3.4", :local=>"::1").to_s # error, mismatched families
define_type :l3addr,
:pack => lambda { |val,obj|
case obj.family
when Socket::AF_INET, Socket::AF_INET6
ip = case val
when IPAddr
val
when Integer
IPAddr.new(val, obj.family)
else
IPAddr.new(val)
end
raise "Mismatched address family" unless ip.family == obj.family
ip.hton
when nil, Socket::AF_UNSPEC
ip = case val
when IPAddr
val
when Integer
raise "Missing address family"
else
IPAddr.new(val)
end
obj.family = ip.family
ip.hton
else
raise "Mismatched address family" if val.is_a?(IPAddr)
val
end
},
:unpack => lambda { |val,obj|
case obj.family
when Socket::AF_INET, Socket::AF_INET6
IPAddr.new_ntoh(val)
else
val
end
}
def initialize(h=nil)
if h.instance_of?(self.class)
@attrs = h.to_hash.dup
else
@attrs = self.class::DEFAULTS.dup
h.each { |k,v| self[k] = v } if h
end
end
def to_hash
@attrs
end
def each(&blk)
@attrs.each(&blk)
end
# Set a field by name. Can use either symbol or string as key.
def []=(k,v)
send "#{k}=", v
end
# Retrieve a field by name. Must use symbol as key.
def [](k)
@attrs[k]
end
def self.inherited(subclass) #:nodoc:
subclass.const_set(:FIELDS, [])
subclass.const_set(:FORMAT, "")
subclass.const_set(:DEFAULTS, {})
end
# Map of numeric message type code => message class
CODE_TO_MESSAGE = {}
# Define which message type code(s) to build using this structure
def self.code(*codes)
codes.each { |code| CODE_TO_MESSAGE[code] = self }
end
# Define a field for this message, which creates accessor methods and
# sets up data required to pack and unpack the structure.
# field :foo, :uchar
# field :foo, :uchar, :default=>0xff # use this default value
def self.field(name, type, opt={})
info = TYPE_INFO[type]
self::FIELDS << name
self::FORMAT << info[:pattern]
self::DEFAULTS[name] = opt.fetch(:default) { info.fetch(:default, 0) }
define_method name do
@attrs.fetch name
end
define_method "#{name}=" do |val|
@attrs.store name, val
end
end
# Returns the packed binary representation of this message (without
# header, and not padded to NLMSG_ALIGNTO bytes)
def to_s
self.class::FIELDS.map { |key| self[key] }.pack(self.class::FORMAT)
end
def inspect
"#<#{self.class} #{@attrs.inspect}>"
end
# Convert a binary representation of this message into an object instance
def self.parse(data)
res = new
data.unpack(self::FORMAT).zip(self::FIELDS).each do |val, key|
res[key] = val
end
res
end
NLMSG_ALIGNTO_1 = NLMSG_ALIGNTO-1 #:nodoc:
NLMSG_ALIGNTO_1_MASK = ~NLMSG_ALIGNTO_1 #:nodoc:
# Round up a length to a multiple of NLMSG_ALIGNTO bytes
def self.align(n)
(n + NLMSG_ALIGNTO_1) & NLMSG_ALIGNTO_1_MASK
end
PADDING = ("\000" * NLMSG_ALIGNTO).freeze #:nodoc:
# Pad a string up to a multiple of NLMSG_ALIGNTO bytes. Returns str.
def self.pad(str)
str << PADDING[0, align(str.bytesize) - str.bytesize]
end
end
# Extends Message to support variable Rtattr attributes. Use 'field'
# to define the fixed parts of the message, and 'rtattr' to define the
# permitted rtattrs. We assume that any particular rtattr is not repeated,
# so we store them in the same underlying hash and create simple accessors
# for them.
class RtattrMessage < Message
RTATTR_PACK = "S_S_".freeze #:nodoc:
RTATTR_SIZE = [0,0].pack(RTATTR_PACK).bytesize #:nodoc:
def self.inherited(subclass) #:nodoc:
super
subclass.const_set(:RTATTRS, {})
end
# Define an rtattr. You need to provide the code, and optionally the
# type (if not provided, it will just be returned as a raw binary string)
# rtattr :foo, 12
# rtattr :foo, 12, :uint
def self.rtattr(name, code, type=nil, opt={})
info = TYPE_INFO[type]
self::RTATTRS[code] = [name, info]
define_method name do
@attrs[name] # rtattrs are optional, non-existent returns nil
end
define_method "#{name}=" do |val|
@attrs.store name, val
end
end
# Return the byte offset to the first rtattr
def self.attr_offset
@attr_offset ||= Message.align(new.to_s.bytesize)
end
# Returns the packed binary representation of this message.
# The main message is processed *after* the rtattrs; this is so that
# the address family can be set automatically while processing any
# optional l3 address rtattrs.
def to_s
data = ""
self.class::RTATTRS.each do |code, (name, info)|
if val = @attrs[name]
Message.pad(data) # assume NLMSG_ALIGNTO == NLA_ALIGNTO
if pack = info[:pack]
val = pack[val,self]
elsif pattern = info[:pattern]
val = Array(val).pack(pattern)
end
data << [val.bytesize+RTATTR_SIZE, code].pack(RTATTR_PACK) << val
end
end
data.empty? ? super : Message.pad(super) + data
end
# Convert a binary representation of this message into an object instance.
# The main message is processed *before* the rtattrs, so that the
# address family is available for l3 address rtattrs.
def self.parse(data)
res = super
attrs = res.to_hash
unpack_rtattr(data, attr_offset) do |code, val|
name, info = self::RTATTRS[code]
if name
if !info
# skip
elsif unpack = info[:unpack]
val = unpack[val,res]
elsif pattern = info[:pattern]
val = val.unpack(pattern).first
end
warn "Duplicate attribute #{name} (#{code}): #{attrs[name].inspect} -> #{val.inspect}" if attrs[name]
attrs[name] = val
else
warn "Unknown attribute #{code}, value #{val.inspect}"
attrs[code] = val
end
end
res
end
# Unpack a string containing a sequence of rtattrs, yielding each in turn.
def self.unpack_rtattr(data, ptr=0) #:nodoc:
while ptr < data.bytesize
raise "Truncated rtattr header!" if ptr + RTATTR_SIZE > data.bytesize
len, code = data[ptr, RTATTR_SIZE].unpack(RTATTR_PACK)
raise "Truncated rtattr body!" if ptr + len > data.bytesize
raise "Invalid rtattr len!" if len < RTATTR_SIZE
yield code, data[ptr+RTATTR_SIZE, len-RTATTR_SIZE]
ptr = Message.align(ptr + len) # assume NLMSG_ALIGNTO == NLA_ALIGNTO
end
end
end
end