6 Commits

Author SHA1 Message Date
Patrick J Cherry
e547696d0d Merge branch 'dev-michel' of gitlab.bytemark.co.uk:open-source/flexnbd-c into dev-michel 2017-07-14 17:05:17 +01:00
Michel Pollet
c19901cf10 mbox: Simplified
Removed the existing mbox that is used to pass transactions from one
thread to the other, use a non-locking FIFO and a simple semaphore
instead.

Removed all notion of void* from the FIFO system, use the now generic
FIFO. Also started to rework the mirror.c code to use typedefs for
structs enums etc.

DO NOT USE. check_mbox is borken and needs changing. Currently
'functional' otherwise like this, but requires more testing.

Signed-off-by: Michel Pollet <buserror@gmail.com>
2016-11-02 12:22:19 +00:00
Michel Pollet
781a91fe3d fifo: Add fifo_declare.h
My own implementation, used in countless projects

Signed-off-by: Michel Pollet <buserror@gmail.com>
2016-11-02 12:21:55 +00:00
Michel Pollet
90e8b13df5 fifo: Split the bitset.h
And fix all dependencies

Signed-off-by: Michel Pollet <buserror@gmail.com>
2016-11-02 12:21:55 +00:00
Michel Pollet
9ab1af8dff tools: semtest: new tool
Piece of code I used to validate that socketpair is a lot quicker than
pthread_semaphores.

Signed-off-by: Michel Pollet <buserror@gmail.com>
2016-11-02 12:21:55 +00:00
Michel Pollet
c265d7fe3f tools: holemap: new tool
Tool to list how a file is 'sparse' and calculate how 'sparse' it
/could/ be.

Signed-off-by: Michel Pollet <buserror@gmail.com>
2016-11-02 12:21:55 +00:00
113 changed files with 9230 additions and 9150 deletions

View File

@@ -1,21 +1,18 @@
stages:
- package
- publish
.package: &package
package:jessie: &package
stage: package
image: $CI_REGISTRY/docker-images/layers:$DISTRO-deb
variables:
DISTRO: jessie
script:
- package
artifacts:
paths:
- pkg/
package:jessie:
<<: *package
variables:
DISTRO: jessie
package:stretch:
<<: *package
variables:
@@ -23,7 +20,7 @@ package:stretch:
publish:
stage: publish
tags:
tags:
- shell
script:
- publish

View File

@@ -1,24 +0,0 @@
# Contribution guide
The code is formatted using the K&R style of "indent".
```
indent -kr <files go here>
```
The C unit tests have also been indented in the same way, but manually adjsted
such that the functions follow the normal libcheck layout.
```c
START_TEST( ... ) {
}
END TEST
```
Indent tends to mangle the `END_TEST` macro, so that will need adjusting if
`indent` is run over the test files again.

View File

@@ -4,7 +4,7 @@ VPATH=src:tests/unit
DESTDIR?=/
PREFIX?=/usr/local/bin
INSTALLDIR=$(DESTDIR)/$(PREFIX)
ifdef DEBUG
CFLAGS_EXTRA=-g -DDEBUG
LDFLAGS_EXTRA=-g
@@ -109,6 +109,7 @@ install:
clean:
rm -rf build/*
.PHONY: clean objs check_objs all server proxy check_bins check doc build test acceptance
# Include extra dependencies at the end, NOT before 'all'

View File

@@ -169,11 +169,6 @@ That is, the '=' is required. This is a limitation of getopt-long.
If no cache size is given, a size of 4096 bytes is assumed. Caching can
be explicitly disabled by setting a size of 0.
ENVIRONMENT
FLEXNBD_UPSTREAM_TIMEOUT The timeout in seconds for the proxy communicating
with the upstream server defaults to 30 seconds.
BUGS
Should be reported via GitHub.

57
debian/changelog vendored
View File

@@ -1,60 +1,3 @@
flexnbd (0.5.0) stable; urgency=medium
[ Patrick J Cherry ]
* Explicitly close the server control socket, and wait for it to close, to
prevent deadlocks during the server clean-up process (#40 !58)
* Ensure mirroring can be restarted after a break command is sent to the
source (#37, !59)
-- James Carter <james.carter@bytemark.co.uk> Fri, 11 Jan 2019 10:37:23 +0000
flexnbd (0.4.0) stable; urgency=medium
* Ensure proxy state is completely reset before upstream init is read,
ensuring any waiting requests are fully replayed (#39, !54)
-- Patrick J Cherry <patrick@bytemark.co.uk> Thu, 15 Nov 2018 14:24:26 +0000
flexnbd (0.3.0) stable; urgency=medium
* Force a msync after every write, ignoring FUA flag, or lack thereof (!51).
-- Patrick J Cherry <patrick@bytemark.co.uk> Tue, 24 Apr 2018 12:05:43 +0100
flexnbd (0.2.0) stable; urgency=medium
[ James Carter ]
* Set TCP keepalive on sockets so broken connections are reaped (#33, !33,
!36)
* Add a context to logs to make debugging problems easier (#34, !34)
[ Chris Cottam ]
* Increased NBD_MAX_SIZE from 1MB to 32MB for qemu 2.11 (!35)
[ Patrick J Cherry ]
* Added FLUSH and FUA support (!38)
* Server returns ENOSPC in response to writes beyond the end of the
filesystem, and EINVAL to unknown commands. (#36, !40)
* Proxy passes all NBD protocol errors through to the client instead of
disconnecting and retrying (#36, !40)
* Fix struct types in readwrite.c (#35, !41)
* Ignore ends of discs that stray outside of 512-byte sector sizes (!42).
* Tweak logging for readloop failures (!44)
* Alter semantics of NBD_MAX_BLOCK_SIZE to remove struct size overheads when
calculating if a request exceeds the max block size (!45)
* Added tests for setting TCP_NODELAY on upstream-reconnections in the
proxy, and refactored the other LD_PRELOAD tests (!43)
* Clean up dead threads before calculating the number of connected clients
on the status command (!46)
-- Patrick J Cherry <patrick@bytemark.co.uk> Tue, 20 Feb 2018 11:43:22 +0000
flexnbd (0.1.7) stable; urgency=medium
* Return bytes_left in migration statistics.
-- Chris Elsworth <chris.elsworth@bytemark.co.uk> Fri, 14 Jul 2017 17:00:38 +0100
flexnbd (0.1.6) stable; urgency=medium
* Remove lots of per-cpu compiler flags, notably march=native.

189
src/common/fifo_declare.h Normal file
View File

@@ -0,0 +1,189 @@
/*
fido_declare.h
Copyright (C) 2003-2012 Michel Pollet <buserror@gmail.com>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* FIFO helpers, aka circular buffers
*
* these macros define accessories for FIFOs of any name, type and
* any (power of two) size
*/
#ifndef __FIFO_DECLARE__
#define __FIFO_DECLARE__
#ifdef __cplusplus
extern "C" {
#endif
/*
doing a :
DECLARE_FIFO(uint8_t, myfifo, 128);
will declare :
enum : myfifo_overflow_f
type : myfifo_t
functions:
// write a byte into the fifo, return 1 if there was room, 0 if there wasn't
int myfifo_write(myfifo_t *c, uint8_t b);
// reads a byte from the fifo, return 0 if empty. Use myfifo_isempty() to check beforehand
uint8_t myfifo_read(myfifo_t *c);
int myfifo_isfull(myfifo_t *c);
int myfifo_isempty(myfifo_t *c);
// returns number of items to read now
uint16_t myfifo_get_read_size(myfifo_t *c);
// read item at offset o from read cursor, no cursor advance
uint8_t myfifo_read_at(myfifo_t *c, uint16_t o);
// write b at offset o compared to current write cursor, no cursor advance
void myfifo_write_at(myfifo_t *c, uint16_t o, uint8_t b);
In your .c you need to 'implement' the fifo:
DEFINE_FIFO(uint8_t, myfifo)
To use the fifo, you must declare at least one :
myfifo_t fifo = FIFO_NULL;
while (!myfifo_isfull(&fifo))
myfifo_write(&fifo, 0xaa);
....
while (!myfifo_isempty(&fifo))
b = myfifo_read(&fifo);
*/
#include <stdint.h>
#if __AVR__
#define FIFO_CURSOR_TYPE uint8_t
#define FIFO_BOOL_TYPE char
#define FIFO_INLINE
#define FIFO_SYNC
#endif
#ifndef FIFO_CURSOR_TYPE
#define FIFO_CURSOR_TYPE uint16_t
#endif
#ifndef FIFO_BOOL_TYPE
#define FIFO_BOOL_TYPE int
#endif
#ifndef FIFO_INLINE
#define FIFO_INLINE inline
#endif
/* We should not need volatile */
#ifndef FIFO_VOLATILE
#define FIFO_VOLATILE
#endif
#ifndef FIFO_SYNC
#define FIFO_SYNC __sync_synchronize()
#endif
#ifndef FIFO_ZERO_INIT
#define FIFO_ZERO_INIT {0}
#endif
#define FIFO_NULL { FIFO_ZERO_INIT, 0, 0, 0 }
/* New compilers don't like unused static functions. However,
* we do like 'static inlines' for these small accessors,
* so we mark them as 'unused'. It stops it complaining */
#ifdef __GNUC__
#define FIFO_DECL static __attribute__ ((unused))
#else
#define FIFO_DECL static
#endif
#define DECLARE_FIFO(__type, __name, __size) \
enum { __name##_overflow_f = (1 << 0) }; \
enum { __name##_fifo_size = (__size) }; \
typedef struct __name##_t { \
__type buffer[__name##_fifo_size]; \
FIFO_VOLATILE FIFO_CURSOR_TYPE read; \
FIFO_VOLATILE FIFO_CURSOR_TYPE write; \
FIFO_VOLATILE uint8_t flags; \
} __name##_t
#define DEFINE_FIFO(__type, __name) \
FIFO_DECL FIFO_INLINE FIFO_BOOL_TYPE __name##_write(__name##_t * c, __type b)\
{\
FIFO_CURSOR_TYPE now = c->write;\
FIFO_CURSOR_TYPE next = (now + 1) & (__name##_fifo_size-1);\
if (c->read != next) { \
c->buffer[now] = b;\
FIFO_SYNC; \
c->write = next;\
return 1;\
}\
return 0;\
}\
FIFO_DECL FIFO_INLINE FIFO_BOOL_TYPE __name##_isfull(__name##_t *c)\
{\
FIFO_CURSOR_TYPE next = (c->write + 1) & (__name##_fifo_size-1);\
return c->read == next;\
}\
FIFO_DECL FIFO_INLINE FIFO_BOOL_TYPE __name##_isempty(__name##_t * c)\
{\
return c->read == c->write;\
}\
FIFO_DECL FIFO_INLINE __type __name##_read(__name##_t * c)\
{\
__type res = FIFO_ZERO_INIT; \
FIFO_CURSOR_TYPE read = c->read;\
if (read == c->write)\
return res;\
res = c->buffer[read];\
FIFO_SYNC; \
c->read = (read + 1) & (__name##_fifo_size-1);\
return res;\
}\
FIFO_DECL FIFO_INLINE FIFO_CURSOR_TYPE __name##_get_read_size(__name##_t *c)\
{\
return ((c->write + __name##_fifo_size) - c->read) & (__name##_fifo_size-1);\
}\
FIFO_DECL FIFO_INLINE FIFO_CURSOR_TYPE __name##_get_write_size(__name##_t *c)\
{\
return (__name##_fifo_size-1) - __name##_get_read_size(c);\
}\
FIFO_DECL FIFO_INLINE void __name##_read_offset(__name##_t *c, FIFO_CURSOR_TYPE o)\
{\
FIFO_SYNC; \
c->read = (c->read + o) & (__name##_fifo_size-1);\
}\
FIFO_DECL FIFO_INLINE __type __name##_read_at(__name##_t *c, FIFO_CURSOR_TYPE o)\
{\
return c->buffer[(c->read + o) & (__name##_fifo_size-1)];\
}\
FIFO_DECL FIFO_INLINE void __name##_write_at(__name##_t *c, FIFO_CURSOR_TYPE o, __type b)\
{\
c->buffer[(c->write + o) & (__name##_fifo_size-1)] = b;\
}\
FIFO_DECL FIFO_INLINE void __name##_write_offset(__name##_t *c, FIFO_CURSOR_TYPE o)\
{\
FIFO_SYNC; \
c->write = (c->write + o) & (__name##_fifo_size-1);\
}\
FIFO_DECL FIFO_INLINE void __name##_reset(__name##_t *c)\
{\
FIFO_SYNC; \
c->read = c->write = c->flags = 0;\
}\
struct __name##_t
#ifdef __cplusplus
};
#endif
#endif

View File

@@ -9,240 +9,223 @@
#include <fcntl.h>
#include "util.h"
#include "bitset.h"
#include "bitstream.h"
#include "ioutil.h"
int build_allocation_map(struct bitset *allocation_map, int fd)
int build_allocation_map(struct bitset * allocation_map, int fd)
{
/* break blocking ioctls down */
const unsigned long max_length = 100 * 1024 * 1024;
const unsigned int max_extents = 1000;
/* break blocking ioctls down */
const unsigned long max_length = 100*1024*1024;
const unsigned int max_extents = 1000;
unsigned long offset = 0;
unsigned long offset = 0;
struct {
struct fiemap fiemap;
struct fiemap_extent extents[max_extents];
} fiemap_static;
struct fiemap *fiemap = (struct fiemap *) &fiemap_static;
struct {
struct fiemap fiemap;
struct fiemap_extent extents[max_extents];
} fiemap_static;
struct fiemap* fiemap = (struct fiemap*) &fiemap_static;
memset(&fiemap_static, 0, sizeof(fiemap_static));
memset(&fiemap_static, 0, sizeof(fiemap_static));
for (offset = 0; offset < allocation_map->size;) {
for (offset = 0; offset < allocation_map->size; ) {
fiemap->fm_start = offset;
fiemap->fm_start = offset;
fiemap->fm_length = max_length;
if (offset + max_length > allocation_map->size) {
fiemap->fm_length = allocation_map->size - offset;
fiemap->fm_length = max_length;
if ( offset + max_length > allocation_map->size ) {
fiemap->fm_length = allocation_map->size-offset;
}
fiemap->fm_flags = FIEMAP_FLAG_SYNC;
fiemap->fm_extent_count = max_extents;
fiemap->fm_mapped_extents = 0;
if ( ioctl( fd, FS_IOC_FIEMAP, fiemap ) < 0 ) {
debug( "Couldn't get fiemap, returning no allocation_map" );
return 0; /* it's up to the caller to free the map */
}
else {
for ( unsigned int i = 0; i < fiemap->fm_mapped_extents; i++ ) {
bitset_set_range( allocation_map,
fiemap->fm_extents[i].fe_logical,
fiemap->fm_extents[i].fe_length );
}
/* must move the offset on, but careful not to jump max_length
* if we've actually hit max_offsets.
*/
if (fiemap->fm_mapped_extents > 0) {
struct fiemap_extent *last = &fiemap->fm_extents[
fiemap->fm_mapped_extents-1
];
offset = last->fe_logical + last->fe_length;
}
else {
offset += fiemap->fm_length;
}
}
}
fiemap->fm_flags = FIEMAP_FLAG_SYNC;
fiemap->fm_extent_count = max_extents;
fiemap->fm_mapped_extents = 0;
if (ioctl(fd, FS_IOC_FIEMAP, fiemap) < 0) {
debug("Couldn't get fiemap, returning no allocation_map");
return 0; /* it's up to the caller to free the map */
} else {
for (unsigned int i = 0; i < fiemap->fm_mapped_extents; i++) {
bitset_set_range(allocation_map,
fiemap->fm_extents[i].fe_logical,
fiemap->fm_extents[i].fe_length);
}
/* must move the offset on, but careful not to jump max_length
* if we've actually hit max_offsets.
*/
if (fiemap->fm_mapped_extents > 0) {
struct fiemap_extent *last =
&fiemap->fm_extents[fiemap->fm_mapped_extents - 1];
offset = last->fe_logical + last->fe_length;
} else {
offset += fiemap->fm_length;
}
}
}
info("Successfully built allocation map");
return 1;
info("Successfully built allocation map");
return 1;
}
int open_and_mmap(const char *filename, int *out_fd, uint64_t * out_size,
void **out_map)
int open_and_mmap(const char* filename, int* out_fd, uint64_t *out_size, void **out_map)
{
/*
* size and out_size are intentionally of different types.
* lseek64() uses off64_t to signal errors in the sign bit.
* Since we check for these errors before trying to assign to
* *out_size, we know *out_size can never go negative.
*/
off64_t size;
/*
* size and out_size are intentionally of different types.
* lseek64() uses off64_t to signal errors in the sign bit.
* Since we check for these errors before trying to assign to
* *out_size, we know *out_size can never go negative.
*/
off64_t size;
/* O_DIRECT should not be used with mmap() */
*out_fd = open(filename, O_RDWR | O_NOATIME);
/* O_DIRECT should not be used with mmap() */
*out_fd = open(filename, O_RDWR | O_SYNC );
if (*out_fd < 1) {
warn("open(%s) failed: does it exist?", filename);
return *out_fd;
}
size = lseek64(*out_fd, 0, SEEK_END);
if (size < 0) {
warn("lseek64() failed");
return size;
}
/* If discs are not in multiples of 512, then odd things happen,
* resulting in reads/writes past the ends of files.
*/
if (size != (size & (~0x1ff))) {
warn("file does not fit into 512-byte sectors; the end of the file will be ignored.");
size &= ~0x1ff;
}
if (out_size) {
*out_size = size;
}
if (out_map) {
*out_map = mmap64(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED,
*out_fd, 0);
if (((long) *out_map) == -1) {
warn("mmap64() failed");
return -1;
if (*out_fd < 1) {
warn("open(%s) failed: does it exist?", filename);
return *out_fd;
}
debug("opened %s size %ld on fd %d @ %p", filename, size, *out_fd,
*out_map);
} else {
debug("opened %s size %ld on fd %d", filename, size, *out_fd);
}
return 0;
size = lseek64(*out_fd, 0, SEEK_END);
if (size < 0) {
warn("lseek64() failed");
return size;
}
if (out_size) {
*out_size = size;
}
if (out_map) {
*out_map = mmap64(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED,
*out_fd, 0);
if (((long) *out_map) == -1) {
warn("mmap64() failed");
return -1;
}
debug("opened %s size %ld on fd %d @ %p", filename, size, *out_fd, *out_map);
}
else {
debug("opened %s size %ld on fd %d", filename, size, *out_fd);
}
return 0;
}
int writeloop(int filedes, const void *buffer, size_t size)
{
size_t written = 0;
while (written < size) {
ssize_t result = write(filedes, buffer + written, size - written);
if (result == -1) {
if (errno == EINTR || errno == EAGAIN || errno == EWOULDBLOCK) {
continue; // busy-wait
}
return -1; // failure
size_t written=0;
while (written < size) {
ssize_t result = write(filedes, buffer+written, size-written);
if (result == -1) {
if ( errno == EINTR || errno == EAGAIN || errno == EWOULDBLOCK ) {
continue; // busy-wait
}
return -1; // failure
}
written += result;
}
written += result;
}
return 0;
return 0;
}
int readloop(int filedes, void *buffer, size_t size)
{
size_t readden = 0;
while (readden < size) {
ssize_t result = read(filedes, buffer + readden, size - readden);
size_t readden=0;
while (readden < size) {
ssize_t result = read(filedes, buffer+readden, size-readden);
if (result == 0 /* EOF */ ) {
warn("end-of-file detected while reading after %i bytes",
readden);
return -1;
}
if ( result == 0 /* EOF */ ) {
warn( "end-of-file detected while reading after %i bytes", readden );
return -1;
}
if (result == -1) {
if (errno == EINTR || errno == EAGAIN || errno == EWOULDBLOCK) {
continue; // busy-wait
}
return -1; // failure
if ( result == -1 ) {
if ( errno == EINTR || errno == EAGAIN || errno == EWOULDBLOCK ) {
continue; // busy-wait
}
return -1; // failure
}
readden += result;
}
readden += result;
}
return 0;
return 0;
}
int sendfileloop(int out_fd, int in_fd, off64_t * offset, size_t count)
int sendfileloop(int out_fd, int in_fd, off64_t *offset, size_t count)
{
size_t sent = 0;
while (sent < count) {
ssize_t result = sendfile64(out_fd, in_fd, offset, count - sent);
debug
("sendfile64(out_fd=%d, in_fd=%d, offset=%p, count-sent=%ld) = %ld",
out_fd, in_fd, offset, count - sent, result);
size_t sent=0;
while (sent < count) {
ssize_t result = sendfile64(out_fd, in_fd, offset, count-sent);
debug("sendfile64(out_fd=%d, in_fd=%d, offset=%p, count-sent=%ld) = %ld", out_fd, in_fd, offset, count-sent, result);
if (result == -1) {
debug("%s (%i) calling sendfile64()", strerror(errno), errno);
return -1;
if (result == -1) {
debug( "%s (%i) calling sendfile64()", strerror(errno), errno );
return -1;
}
sent += result;
debug("sent=%ld, count=%ld", sent, count);
}
sent += result;
debug("sent=%ld, count=%ld", sent, count);
}
debug("exiting sendfileloop");
return 0;
debug("exiting sendfileloop");
return 0;
}
#include <errno.h>
ssize_t spliceloop(int fd_in, loff_t * off_in, int fd_out,
loff_t * off_out, size_t len, unsigned int flags2)
ssize_t spliceloop(int fd_in, loff_t *off_in, int fd_out, loff_t *off_out, size_t len, unsigned int flags2)
{
const unsigned int flags = SPLICE_F_MORE | SPLICE_F_MOVE | flags2;
size_t spliced = 0;
const unsigned int flags = SPLICE_F_MORE|SPLICE_F_MOVE|flags2;
size_t spliced=0;
//debug("spliceloop(%d, %ld, %d, %ld, %ld)", fd_in, off_in ? *off_in : 0, fd_out, off_out ? *off_out : 0, len);
//debug("spliceloop(%d, %ld, %d, %ld, %ld)", fd_in, off_in ? *off_in : 0, fd_out, off_out ? *off_out : 0, len);
while (spliced < len) {
ssize_t result =
splice(fd_in, off_in, fd_out, off_out, len, flags);
if (result < 0) {
//debug("result=%ld (%s), spliced=%ld, len=%ld", result, strerror(errno), spliced, len);
if (errno == EAGAIN && (flags & SPLICE_F_NONBLOCK)) {
return spliced;
} else {
return -1;
}
} else {
spliced += result;
//debug("result=%ld (%s), spliced=%ld, len=%ld", result, strerror(errno), spliced, len);
while (spliced < len) {
ssize_t result = splice(fd_in, off_in, fd_out, off_out, len, flags);
if (result < 0) {
//debug("result=%ld (%s), spliced=%ld, len=%ld", result, strerror(errno), spliced, len);
if (errno == EAGAIN && (flags & SPLICE_F_NONBLOCK) ) {
return spliced;
}
else {
return -1;
}
} else {
spliced += result;
//debug("result=%ld (%s), spliced=%ld, len=%ld", result, strerror(errno), spliced, len);
}
}
}
return spliced;
return spliced;
}
int splice_via_pipe_loop(int fd_in, int fd_out, size_t len)
{
int pipefd[2]; /* read end, write end */
size_t spliced = 0;
int pipefd[2]; /* read end, write end */
size_t spliced=0;
if (pipe(pipefd) == -1) {
return -1;
}
while (spliced < len) {
ssize_t run = len - spliced;
ssize_t s2, s1 =
spliceloop(fd_in, NULL, pipefd[1], NULL, run,
SPLICE_F_NONBLOCK);
/*if (run > 65535)
run = 65535; */
if (s1 < 0) {
break;
if (pipe(pipefd) == -1) {
return -1;
}
s2 = spliceloop(pipefd[0], NULL, fd_out, NULL, s1, 0);
if (s2 < 0) {
break;
}
spliced += s2;
}
close(pipefd[0]);
close(pipefd[1]);
while (spliced < len) {
ssize_t run = len-spliced;
ssize_t s2, s1 = spliceloop(fd_in, NULL, pipefd[1], NULL, run, SPLICE_F_NONBLOCK);
/*if (run > 65535)
run = 65535;*/
if (s1 < 0) { break; }
return spliced < len ? -1 : 0;
s2 = spliceloop(pipefd[0], NULL, fd_out, NULL, s1, 0);
if (s2 < 0) { break; }
spliced += s2;
}
close(pipefd[0]);
close(pipefd[1]);
return spliced < len ? -1 : 0;
}
/* Reads single bytes from fd until either an EOF or a newline appears.
@@ -252,123 +235,117 @@ int splice_via_pipe_loop(int fd_in, int fd_out, size_t len)
* Returns the number of read bytes: the length of the line without the
* newline, plus the trailing null.
*/
int read_until_newline(int fd, char *buf, int bufsize)
int read_until_newline(int fd, char* buf, int bufsize)
{
int cur;
int cur;
for (cur = 0; cur < bufsize; cur++) {
int result = read(fd, buf + cur, 1);
if (result <= 0) {
return -1;
for (cur=0; cur < bufsize; cur++) {
int result = read(fd, buf+cur, 1);
if (result <= 0) { return -1; }
if (buf[cur] == 10) {
buf[cur] = '\0';
break;
}
}
if (buf[cur] == 10) {
buf[cur] = '\0';
break;
}
}
return cur + 1;
return cur+1;
}
int read_lines_until_blankline(int fd, int max_line_length, char ***lines)
{
int lines_count = 0;
char line[max_line_length + 1];
*lines = NULL;
int lines_count = 0;
char line[max_line_length+1];
*lines = NULL;
memset(line, 0, max_line_length + 1);
memset(line, 0, max_line_length+1);
while (1) {
int readden = read_until_newline(fd, line, max_line_length);
/* readden will be:
* 1 for an empty line
* -1 for an eof
* -1 for a read error
*/
if (readden <= 1) {
return lines_count;
while (1) {
int readden = read_until_newline(fd, line, max_line_length);
/* readden will be:
* 1 for an empty line
* -1 for an eof
* -1 for a read error
*/
if (readden <= 1) { return lines_count; }
*lines = xrealloc(*lines, (lines_count+1) * sizeof(char*));
(*lines)[lines_count] = strdup(line);
if ((*lines)[lines_count][0] == 0) {
return lines_count;
}
lines_count++;
}
*lines = xrealloc(*lines, (lines_count + 1) * sizeof(char *));
(*lines)[lines_count] = strdup(line);
if ((*lines)[lines_count][0] == 0) {
return lines_count;
}
lines_count++;
}
}
int fd_is_closed(int fd_in)
int fd_is_closed( int fd_in )
{
int errno_old = errno;
int result = fcntl(fd_in, F_GETFL) < 0;
errno = errno_old;
return result;
int errno_old = errno;
int result = fcntl( fd_in, F_GETFL ) < 0;
errno = errno_old;
return result;
}
static inline int io_errno_permanent(void)
{
return (errno != EAGAIN && errno != EWOULDBLOCK && errno != EINTR);
return ( errno != EAGAIN && errno != EWOULDBLOCK && errno != EINTR );
}
/* Returns -1 if the operation failed, or the number of bytes read if all is
* well. Note that 0 bytes may be returned. Unlike read(), this is not an EOF! */
ssize_t iobuf_read(int fd, struct iobuf * iobuf, size_t default_size)
ssize_t iobuf_read(int fd, struct iobuf *iobuf, size_t default_size )
{
size_t left;
ssize_t count;
size_t left;
ssize_t count;
if (iobuf->needle == 0) {
iobuf->size = default_size;
}
left = iobuf->size - iobuf->needle;
debug("Reading %" PRIu32 " of %" PRIu32 " bytes from fd %i", left,
iobuf->size, fd);
count = read(fd, iobuf->buf + iobuf->needle, left);
if (count > 0) {
iobuf->needle += count;
debug("read() returned %" PRIu32 " bytes", count);
} else if (count == 0) {
warn("read() returned EOF on fd %i", fd);
errno = 0;
return -1;
} else if (count == -1) {
if (io_errno_permanent()) {
warn(SHOW_ERRNO("read() failed on fd %i", fd));
} else {
debug(SHOW_ERRNO("read() returned 0 bytes"));
count = 0;
if ( iobuf->needle == 0 ) {
iobuf->size = default_size;
}
}
return count;
left = iobuf->size - iobuf->needle;
debug( "Reading %"PRIu32" of %"PRIu32" bytes from fd %i", left, iobuf->size, fd );
count = read( fd, iobuf->buf + iobuf->needle, left );
if ( count > 0 ) {
iobuf->needle += count;
debug( "read() returned %"PRIu32" bytes", count );
} else if ( count == 0 ) {
warn( "read() returned EOF on fd %i", fd );
errno = 0;
return -1;
} else if ( count == -1 ) {
if ( io_errno_permanent() ) {
warn( SHOW_ERRNO( "read() failed on fd %i", fd ) );
} else {
debug( SHOW_ERRNO( "read() returned 0 bytes" ) );
count = 0;
}
}
return count;
}
ssize_t iobuf_write(int fd, struct iobuf * iobuf)
ssize_t iobuf_write( int fd, struct iobuf *iobuf )
{
size_t left = iobuf->size - iobuf->needle;
ssize_t count;
size_t left = iobuf->size - iobuf->needle;
ssize_t count;
debug("Writing %" PRIu32 " of %" PRIu32 " bytes to fd %i", left,
iobuf->size, fd);
count = write(fd, iobuf->buf + iobuf->needle, left);
debug( "Writing %"PRIu32" of %"PRIu32" bytes to fd %i", left, iobuf->size, fd );
count = write( fd, iobuf->buf + iobuf->needle, left );
if (count >= 0) {
iobuf->needle += count;
debug("write() returned %" PRIu32 " bytes", count);
} else {
if (io_errno_permanent()) {
warn(SHOW_ERRNO("write() failed on fd %i", fd));
if ( count >= 0 ) {
iobuf->needle += count;
debug( "write() returned %"PRIu32" bytes", count );
} else {
debug(SHOW_ERRNO("write() returned 0 bytes"));
count = 0;
if ( io_errno_permanent() ) {
warn( SHOW_ERRNO( "write() failed on fd %i", fd ) );
} else {
debug( SHOW_ERRNO( "write() returned 0 bytes" ) );
count = 0;
}
}
}
return count;
return count;
}

View File

@@ -3,16 +3,16 @@
#include <sys/types.h>
struct iobuf {
unsigned char *buf;
size_t size;
size_t needle;
unsigned char *buf;
size_t size;
size_t needle;
};
ssize_t iobuf_read(int fd, struct iobuf *iobuf, size_t default_size);
ssize_t iobuf_write(int fd, struct iobuf *iobuf);
ssize_t iobuf_read( int fd, struct iobuf* iobuf, size_t default_size );
ssize_t iobuf_write( int fd, struct iobuf* iobuf );
#include "serve.h"
struct bitset; /* don't need whole of bitset.h here */
struct bitset; /* don't need whole of bitset.h here */
/** Scan the file opened in ''fd'', set bits in ''allocation_map'' that
* correspond to which blocks are physically allocated on disc (or part-
@@ -20,7 +20,7 @@ struct bitset; /* don't need whole of bitset.h here */
* than you've asked for, any block or part block will count as "allocated"
* with the corresponding bit set. Returns 1 if successful, 0 otherwise.
*/
int build_allocation_map(struct bitset *allocation_map, int fd);
int build_allocation_map(struct bitset * allocation_map, int fd);
/** Repeat a write() operation that succeeds partially until ''size'' bytes
* are written, or an error is returned, when it returns -1 as usual.
@@ -35,11 +35,10 @@ int readloop(int filedes, void *buffer, size_t size);
/** Repeat a sendfile() operation that succeeds partially until ''size'' bytes
* are written, or an error is returned, when it returns -1 as usual.
*/
int sendfileloop(int out_fd, int in_fd, off64_t * offset, size_t count);
int sendfileloop(int out_fd, int in_fd, off64_t *offset, size_t count);
/** Repeat a splice() operation until we have 'len' bytes. */
ssize_t spliceloop(int fd_in, loff_t * off_in, int fd_out,
loff_t * off_out, size_t len, unsigned int flags2);
ssize_t spliceloop(int fd_in, loff_t *off_in, int fd_out, loff_t *off_out, size_t len, unsigned int flags2);
/** Copy ''len'' bytes from ''fd_in'' to ''fd_out'' by creating a temporary
* pipe and using the Linux splice call repeatedly until it has transferred
@@ -51,7 +50,7 @@ int splice_via_pipe_loop(int fd_in, int fd_out, size_t len);
* until an LF character is received, which is written to the buffer at a zero
* byte. Returns -1 on error, or the number of bytes written to the buffer.
*/
int read_until_newline(int fd, char *buf, int bufsize);
int read_until_newline(int fd, char* buf, int bufsize);
/** Read a number of lines using read_until_newline, until an empty line is
* received (i.e. the sequence LF LF). The data is read from ''fd'' and
@@ -66,12 +65,12 @@ int read_lines_until_blankline(int fd, int max_line_length, char ***lines);
* ''out_size'' and the address of the mmap in ''out_map''. If anything goes
* wrong, returns -1 setting errno, otherwise 0.
*/
int open_and_mmap(const char *filename, int *out_fd, uint64_t * out_size,
void **out_map);
int open_and_mmap( const char* filename, int* out_fd, uint64_t* out_size, void **out_map);
/** Check to see whether the given file descriptor is closed.
*/
int fd_is_closed(int fd_in);
int fd_is_closed( int fd_in );
#endif

View File

@@ -2,7 +2,7 @@
#define MODE_H
void mode(char *mode, int argc, char **argv);
void mode(char* mode, int argc, char **argv);
#include <getopt.h>
@@ -68,9 +68,9 @@ void mode(char *mode, int argc, char **argv);
"\t--" OPT_VERBOSE ",-" SOPT_VERBOSE "\t\tOutput debug information.\n"
#ifdef DEBUG
#define VERBOSE_LOG_LEVEL 0
# define VERBOSE_LOG_LEVEL 0
#else
#define VERBOSE_LOG_LEVEL 1
# define VERBOSE_LOG_LEVEL 1
#endif
#define QUIET_LOG_LEVEL 4
@@ -91,6 +91,7 @@ void mode(char *mode, int argc, char **argv);
#define MAX_SPEED_LINE \
"\t--" OPT_MAX_SPEED ",-m <bps>\tMaximum speed of the migration, in bytes/sec.\n"
char *help_help_text;
char * help_help_text;
#endif

View File

@@ -8,54 +8,51 @@
* We intentionally ignore the reserved 128 bytes at the end of the
* request, since there's nothing we can do with them.
*/
void nbd_r2h_init(struct nbd_init_raw *from, struct nbd_init *to)
void nbd_r2h_init( struct nbd_init_raw * from, struct nbd_init * to )
{
memcpy(to->passwd, from->passwd, 8);
to->magic = be64toh(from->magic);
to->size = be64toh(from->size);
to->flags = be32toh(from->flags);
memcpy( to->passwd, from->passwd, 8 );
to->magic = be64toh( from->magic );
to->size = be64toh( from->size );
}
void nbd_h2r_init(struct nbd_init *from, struct nbd_init_raw *to)
void nbd_h2r_init( struct nbd_init * from, struct nbd_init_raw * to)
{
memcpy(to->passwd, from->passwd, 8);
to->magic = htobe64(from->magic);
to->size = htobe64(from->size);
to->flags = htobe32(from->flags);
memcpy( to->passwd, from->passwd, 8 );
to->magic = htobe64( from->magic );
to->size = htobe64( from->size );
}
void nbd_r2h_request(struct nbd_request_raw *from, struct nbd_request *to)
void nbd_r2h_request( struct nbd_request_raw *from, struct nbd_request * to )
{
to->magic = be32toh(from->magic);
to->flags = be16toh(from->flags);
to->type = be16toh(from->type);
to->handle.w = from->handle.w;
to->from = be64toh(from->from);
to->len = be32toh(from->len);
to->magic = htobe32( from->magic );
to->type = htobe32( from->type );
to->handle.w = from->handle.w;
to->from = htobe64( from->from );
to->len = htobe32( from->len );
}
void nbd_h2r_request(struct nbd_request *from, struct nbd_request_raw *to)
void nbd_h2r_request( struct nbd_request * from, struct nbd_request_raw * to )
{
to->magic = htobe32(from->magic);
to->flags = htobe16(from->flags);
to->type = htobe16(from->type);
to->handle.w = from->handle.w;
to->from = htobe64(from->from);
to->len = htobe32(from->len);
to->magic = be32toh( from->magic );
to->type = be32toh( from->type );
to->handle.w = from->handle.w;
to->from = be64toh( from->from );
to->len = be32toh( from->len );
}
void nbd_r2h_reply(struct nbd_reply_raw *from, struct nbd_reply *to)
void nbd_r2h_reply( struct nbd_reply_raw * from, struct nbd_reply * to )
{
to->magic = be32toh(from->magic);
to->error = be32toh(from->error);
to->handle.w = from->handle.w;
to->magic = htobe32( from->magic );
to->error = htobe32( from->error );
to->handle.w = from->handle.w;
}
void nbd_h2r_reply(struct nbd_reply *from, struct nbd_reply_raw *to)
void nbd_h2r_reply( struct nbd_reply * from, struct nbd_reply_raw * to )
{
to->magic = htobe32(from->magic);
to->error = htobe32(from->error);
to->handle.w = from->handle.w;
to->magic = be32toh( from->magic );
to->error = be32toh( from->error );
to->handle.w = from->handle.w;
}

View File

@@ -7,39 +7,16 @@
#define INIT_MAGIC 0x0000420281861253
#define REQUEST_MAGIC 0x25609513
#define REPLY_MAGIC 0x67446698
#define REQUEST_READ 0
#define REQUEST_WRITE 1
#define REQUEST_DISCONNECT 2
#define REQUEST_FLUSH 3
/* values for transmission flag field */
#define FLAG_HAS_FLAGS (1 << 0) /* Flags are there */
#define FLAG_SEND_FLUSH (1 << 2) /* Send FLUSH */
#define FLAG_SEND_FUA (1 << 3) /* Send FUA (Force Unit Access) */
/* values for command flag field */
#define CMD_FLAG_FUA (1 << 0)
#if 0
/* Not yet implemented by flexnbd */
#define REQUEST_TRIM 4
#define REQUEST_WRITE_ZEROES 6
#define FLAG_READ_ONLY (1 << 1) /* Device is read-only */
#define FLAG_ROTATIONAL (1 << 4) /* Use elevator algorithm - rotational media */
#define FLAG_SEND_TRIM (1 << 5) /* Send TRIM (discard) */
#define FLAG_SEND_WRITE_ZEROES (1 << 6) /* Send NBD_CMD_WRITE_ZEROES */
#define FLAG_CAN_MULTI_CONN (1 << 8) /* multiple connections are okay */
#define CMD_FLAG_NO_HOLE (1 << 1)
#endif
/* The top 2 bytes of the type field are overloaded and can contain flags */
#define REQUEST_MASK 0x0000ffff
/* 32 MiB is the maximum qemu will send you:
* https://github.com/qemu/qemu/blob/v2.11.0/include/block/nbd.h#L183
*/
#define NBD_MAX_SIZE ( 32 * 1024 * 1024 )
/* 1MiB is the de-facto standard for maximum size of header + data */
#define NBD_MAX_SIZE ( 1024 * 1024 )
#define NBD_REQUEST_SIZE ( sizeof( struct nbd_request_raw ) )
#define NBD_REPLY_SIZE ( sizeof( struct nbd_reply_raw ) )
@@ -48,8 +25,8 @@
#include <inttypes.h>
typedef union nbd_handle_t {
uint8_t b[8];
uint64_t w;
uint8_t b[8];
uint64_t w;
} nbd_handle_t;
/* The _raw types are the types as they appear on the wire. Non-_raw
@@ -58,57 +35,56 @@ typedef union nbd_handle_t {
* for converting host to raw.
*/
struct nbd_init_raw {
char passwd[8];
__be64 magic;
__be64 size;
__be32 flags;
char reserved[124];
char passwd[8];
__be64 magic;
__be64 size;
char reserved[128];
};
struct nbd_request_raw {
__be32 magic;
__be16 flags;
__be16 type; /* == READ || == WRITE || == FLUSH */
nbd_handle_t handle;
__be64 from;
__be32 len;
} __attribute__ ((packed));
__be32 magic;
__be32 type; /* == READ || == WRITE */
nbd_handle_t handle;
__be64 from;
__be32 len;
} __attribute__((packed));
struct nbd_reply_raw {
__be32 magic;
__be32 error; /* 0 = ok, else error */
nbd_handle_t handle; /* handle you got from request */
__be32 magic;
__be32 error; /* 0 = ok, else error */
nbd_handle_t handle; /* handle you got from request */
};
struct nbd_init {
char passwd[8];
uint64_t magic;
uint64_t size;
uint32_t flags;
char reserved[124];
char passwd[8];
uint64_t magic;
uint64_t size;
char reserved[128];
};
struct nbd_request {
uint32_t magic;
uint16_t flags;
uint16_t type; /* == READ || == WRITE || == DISCONNECT || == FLUSH */
nbd_handle_t handle;
uint64_t from;
uint32_t len;
} __attribute__ ((packed));
uint32_t magic;
uint32_t type; /* == READ || == WRITE || == DISCONNECT */
nbd_handle_t handle;
uint64_t from;
uint32_t len;
} __attribute__((packed));
struct nbd_reply {
uint32_t magic;
uint32_t error; /* 0 = ok, else error */
nbd_handle_t handle; /* handle you got from request */
uint32_t magic;
uint32_t error; /* 0 = ok, else error */
nbd_handle_t handle; /* handle you got from request */
};
void nbd_r2h_init(struct nbd_init_raw *from, struct nbd_init *to);
void nbd_r2h_request(struct nbd_request_raw *from, struct nbd_request *to);
void nbd_r2h_reply(struct nbd_reply_raw *from, struct nbd_reply *to);
void nbd_r2h_init( struct nbd_init_raw * from, struct nbd_init * to );
void nbd_r2h_request( struct nbd_request_raw *from, struct nbd_request * to );
void nbd_r2h_reply( struct nbd_reply_raw * from, struct nbd_reply * to );
void nbd_h2r_init(struct nbd_init *from, struct nbd_init_raw *to);
void nbd_h2r_request(struct nbd_request *from, struct nbd_request_raw *to);
void nbd_h2r_reply(struct nbd_reply *from, struct nbd_reply_raw *to);
void nbd_h2r_init( struct nbd_init * from, struct nbd_init_raw * to);
void nbd_h2r_request( struct nbd_request * from, struct nbd_request_raw * to );
void nbd_h2r_reply( struct nbd_reply * from, struct nbd_reply_raw * to );
#endif

View File

@@ -10,116 +10,118 @@ int atoi(const char *nptr);
)
/* FIXME: should change this to return negative on error like everything else */
int parse_ip_to_sockaddr(struct sockaddr *out, char *src)
int parse_ip_to_sockaddr(struct sockaddr* out, char* src)
{
NULLCHECK(out);
NULLCHECK(src);
NULLCHECK( out );
NULLCHECK( src );
char temp[64];
struct sockaddr_in *v4 = (struct sockaddr_in *) out;
struct sockaddr_in6 *v6 = (struct sockaddr_in6 *) out;
char temp[64];
struct sockaddr_in *v4 = (struct sockaddr_in *) out;
struct sockaddr_in6 *v6 = (struct sockaddr_in6 *) out;
/* allow user to start with [ and end with any other invalid char */
{
int i = 0, j = 0;
if (src[i] == '[') {
i++;
/* allow user to start with [ and end with any other invalid char */
{
int i=0, j=0;
if (src[i] == '[') { i++; }
for (; i<64 && IS_IP_VALID_CHAR(src[i]); i++) {
temp[j++] = src[i];
}
temp[j] = 0;
}
for (; i < 64 && IS_IP_VALID_CHAR(src[i]); i++) {
temp[j++] = src[i];
if (temp[0] == '0' && temp[1] == '\0') {
v4->sin_family = AF_INET;
v4->sin_addr.s_addr = INADDR_ANY;
return 1;
}
temp[j] = 0;
}
if (temp[0] == '0' && temp[1] == '\0') {
v4->sin_family = AF_INET;
v4->sin_addr.s_addr = INADDR_ANY;
return 1;
}
if (inet_pton(AF_INET, temp, &v4->sin_addr) == 1) {
out->sa_family = AF_INET;
return 1;
}
if (inet_pton(AF_INET, temp, &v4->sin_addr) == 1) {
out->sa_family = AF_INET;
return 1;
}
if (inet_pton(AF_INET6, temp, &v6->sin6_addr) == 1) {
out->sa_family = AF_INET6;
return 1;
}
if (inet_pton(AF_INET6, temp, &v6->sin6_addr) == 1) {
out->sa_family = AF_INET6;
return 1;
}
return 0;
return 0;
}
int parse_to_sockaddr(struct sockaddr *out, char *address)
int parse_to_sockaddr(struct sockaddr* out, char* address)
{
struct sockaddr_un *un = (struct sockaddr_un *) out;
struct sockaddr_un* un = (struct sockaddr_un*) out;
NULLCHECK(address);
NULLCHECK( address );
if (address[0] == '/') {
un->sun_family = AF_UNIX;
strncpy(un->sun_path, address, 108); /* FIXME: linux only */
return 1;
}
if ( address[0] == '/' ) {
un->sun_family = AF_UNIX;
strncpy( un->sun_path, address, 108 ); /* FIXME: linux only */
return 1;
}
return parse_ip_to_sockaddr(out, address);
return parse_ip_to_sockaddr( out, address );
}
int parse_acl(struct ip_and_mask (**out)[], int max, char **entries)
{
struct ip_and_mask *list;
int i;
struct ip_and_mask* list;
int i;
if (max == 0) {
*out = NULL;
return 0;
} else {
list = xmalloc(max * sizeof(struct ip_and_mask));
*out = (struct ip_and_mask(*)[]) list;
debug("acl alloc: %p", *out);
}
if (max == 0) {
*out = NULL;
return 0;
}
else {
list = xmalloc(max * sizeof(struct ip_and_mask));
*out = (struct ip_and_mask (*)[])list;
debug("acl alloc: %p", *out);
}
for (i = 0; i < max; i++) {
int j;
struct ip_and_mask *outentry = &list[i];
for (i = 0; i < max; i++) {
int j;
struct ip_and_mask* outentry = &list[i];
# define MAX_MASK_BITS (outentry->ip.family == AF_INET ? 32 : 128)
if (parse_ip_to_sockaddr(&outentry->ip.generic, entries[i]) == 0) {
return i;
}
if (parse_ip_to_sockaddr(&outentry->ip.generic, entries[i]) == 0) {
return i;
}
for (j = 0; entries[i][j] && entries[i][j] != '/'; j++); // increment j!
for (j=0; entries[i][j] && entries[i][j] != '/'; j++)
; // increment j!
if (entries[i][j] == '/') {
outentry->mask = atoi(entries[i] + j + 1);
if (outentry->mask < 1 || outentry->mask > MAX_MASK_BITS) {
return i;
}
} else {
outentry->mask = MAX_MASK_BITS;
}
if (entries[i][j] == '/') {
outentry->mask = atoi(entries[i]+j+1);
if (outentry->mask < 1 || outentry->mask > MAX_MASK_BITS) {
return i;
}
}
else {
outentry->mask = MAX_MASK_BITS;
}
# undef MAX_MASK_BITS
debug("acl ptr[%d]: %p %d", i, outentry, outentry->mask);
}
debug("acl ptr[%d]: %p %d",i, outentry, outentry->mask);
}
for (i = 0; i < max; i++) {
debug("acl entry %d @ %p has mask %d", i, list[i], list[i].mask);
}
for (i=0; i < max; i++) {
debug("acl entry %d @ %p has mask %d", i, list[i], list[i].mask);
}
return max;
return max;
}
void parse_port(char *s_port, struct sockaddr_in *out)
void parse_port( char *s_port, struct sockaddr_in *out )
{
NULLCHECK(s_port);
NULLCHECK( s_port );
int raw_port;
int raw_port;
raw_port = atoi(s_port);
if (raw_port < 0 || raw_port > 65535) {
fatal("Port number must be >= 0 and <= 65535");
}
out->sin_port = htobe16(raw_port);
raw_port = atoi( s_port );
if ( raw_port < 0 || raw_port > 65535 ) {
fatal( "Port number must be >= 0 and <= 65535" );
}
out->sin_port = htobe16( raw_port );
}

View File

@@ -8,21 +8,22 @@
#include <unistd.h>
union mysockaddr {
unsigned short family;
struct sockaddr generic;
struct sockaddr_in v4;
struct sockaddr_in6 v6;
struct sockaddr_un un;
unsigned short family;
struct sockaddr generic;
struct sockaddr_in v4;
struct sockaddr_in6 v6;
struct sockaddr_un un;
};
struct ip_and_mask {
union mysockaddr ip;
int mask;
union mysockaddr ip;
int mask;
};
int parse_ip_to_sockaddr(struct sockaddr *out, char *src);
int parse_to_sockaddr(struct sockaddr *out, char *src);
int parse_ip_to_sockaddr(struct sockaddr* out, char* src);
int parse_to_sockaddr(struct sockaddr* out, char* src);
int parse_acl(struct ip_and_mask (**out)[], int max, char **entries);
void parse_port(char *s_port, struct sockaddr_in *out);
void parse_port( char *s_port, struct sockaddr_in *out );
#endif

View File

@@ -8,223 +8,212 @@
#include <string.h>
#include <sys/socket.h>
int socket_connect(struct sockaddr *to, struct sockaddr *from)
int socket_connect(struct sockaddr* to, struct sockaddr* from)
{
int fd =
socket(to->sa_family == AF_INET ? PF_INET : PF_INET6, SOCK_STREAM,
0);
if (fd < 0) {
warn("Couldn't create client socket");
return -1;
}
if (NULL != from) {
if (0 > bind(fd, from, sizeof(struct sockaddr_in6))) {
warn(SHOW_ERRNO("bind() to source address failed"));
if (0 > close(fd)) { /* Non-fatal leak */
warn(SHOW_ERRNO("Failed to close fd %i", fd));
}
return -1;
int fd = socket(to->sa_family == AF_INET ? PF_INET : PF_INET6, SOCK_STREAM, 0);
if( fd < 0 ){
warn( "Couldn't create client socket");
return -1;
}
}
if (0 > sock_try_connect(fd, to, sizeof(struct sockaddr_in6), 15)) {
warn(SHOW_ERRNO("connect failed"));
if (0 > close(fd)) { /* Non-fatal leak */
warn(SHOW_ERRNO("Failed to close fd %i", fd));
if (NULL != from) {
if ( 0 > bind( fd, from, sizeof(struct sockaddr_in6 ) ) ){
warn( SHOW_ERRNO( "bind() to source address failed" ) );
if ( 0 > close( fd ) ) { /* Non-fatal leak */
warn( SHOW_ERRNO( "Failed to close fd %i", fd ) );
}
return -1;
}
}
return -1;
}
if (sock_set_tcp_nodelay(fd, 1) == -1) {
warn(SHOW_ERRNO("Failed to set TCP_NODELAY"));
}
if ( 0 > sock_try_connect( fd, to, sizeof( struct sockaddr_in6 ), 15 ) ) {
warn( SHOW_ERRNO( "connect failed" ) );
if ( 0 > close( fd ) ) { /* Non-fatal leak */
warn( SHOW_ERRNO( "Failed to close fd %i", fd ) );
}
return -1;
}
return fd;
if ( sock_set_tcp_nodelay( fd, 1 ) == -1 ) {
warn( SHOW_ERRNO( "Failed to set TCP_NODELAY" ) );
}
return fd;
}
int nbd_check_hello(struct nbd_init_raw *init_raw, uint64_t * out_size,
uint32_t * out_flags)
int nbd_check_hello( struct nbd_init_raw* init_raw, uint64_t* out_size )
{
if (strncmp(init_raw->passwd, INIT_PASSWD, 8) != 0) {
warn("wrong passwd");
goto fail;
}
if (be64toh(init_raw->magic) != INIT_MAGIC) {
warn("wrong magic (%x)", be64toh(init_raw->magic));
goto fail;
}
if ( strncmp( init_raw->passwd, INIT_PASSWD, 8 ) != 0 ) {
warn( "wrong passwd" );
goto fail;
}
if ( be64toh( init_raw->magic ) != INIT_MAGIC ) {
warn( "wrong magic (%x)", be64toh( init_raw->magic ) );
goto fail;
}
if (NULL != out_size) {
*out_size = be64toh(init_raw->size);
}
if ( NULL != out_size ) {
*out_size = be64toh( init_raw->size );
}
if (NULL != out_flags) {
*out_flags = be32toh(init_raw->flags);
}
return 1;
fail:
return 0;
}
int socket_nbd_read_hello(int fd, uint64_t * out_size,
uint32_t * out_flags)
{
struct nbd_init_raw init_raw;
if (0 > readloop(fd, &init_raw, sizeof(init_raw))) {
warn("Couldn't read init");
return 1;
fail:
return 0;
}
return nbd_check_hello(&init_raw, out_size, out_flags);
}
void nbd_hello_to_buf(struct nbd_init_raw *buf, off64_t out_size,
uint32_t out_flags)
int socket_nbd_read_hello( int fd, uint64_t* out_size )
{
struct nbd_init init;
struct nbd_init_raw init_raw;
memcpy(&init.passwd, INIT_PASSWD, 8);
init.magic = INIT_MAGIC;
init.size = out_size;
init.flags = out_flags;
memset(buf, 0, sizeof(struct nbd_init_raw)); // ensure reserved is 0s
nbd_h2r_init(&init, buf);
if ( 0 > readloop( fd, &init_raw, sizeof(init_raw) ) ) {
warn( "Couldn't read init" );
return 0;
}
return;
return nbd_check_hello( &init_raw, out_size );
}
int socket_nbd_write_hello(int fd, off64_t out_size, uint32_t out_flags)
void nbd_hello_to_buf( struct nbd_init_raw *buf, off64_t out_size )
{
struct nbd_init_raw init_raw;
nbd_hello_to_buf(&init_raw, out_size, out_flags);
struct nbd_init init;
if (0 > writeloop(fd, &init_raw, sizeof(init_raw))) {
warn(SHOW_ERRNO("failed to write hello to socket"));
return 0;
}
return 1;
memcpy( &init.passwd, INIT_PASSWD, 8 );
init.magic = INIT_MAGIC;
init.size = out_size;
memset( buf, 0, sizeof( struct nbd_init_raw ) ); // ensure reserved is 0s
nbd_h2r_init( &init, buf );
return;
}
void fill_request(struct nbd_request_raw *request_raw, uint16_t type,
uint16_t flags, uint64_t from, uint32_t len)
int socket_nbd_write_hello(int fd, off64_t out_size)
{
request_raw->magic = htobe32(REQUEST_MAGIC);
request_raw->type = htobe16(type);
request_raw->flags = htobe16(flags);
request_raw->handle.w =
(((uint64_t) rand()) << 32) | ((uint64_t) rand());
request_raw->from = htobe64(from);
request_raw->len = htobe32(len);
struct nbd_init_raw init_raw;
nbd_hello_to_buf( &init_raw, out_size );
if ( 0 > writeloop( fd, &init_raw, sizeof( init_raw ) ) ) {
warn( SHOW_ERRNO( "failed to write hello to socket" ) );
return 0;
}
return 1;
}
void read_reply(int fd, uint64_t request_raw_handle,
struct nbd_reply *reply)
void fill_request(struct nbd_request *request, int type, uint64_t from, uint32_t len)
{
struct nbd_reply_raw reply_raw;
ERROR_IF_NEGATIVE(readloop
(fd, &reply_raw, sizeof(struct nbd_reply_raw)),
"Couldn't read reply");
nbd_r2h_reply(&reply_raw, reply);
if (reply->magic != REPLY_MAGIC) {
error("Reply magic incorrect (%x)", reply->magic);
}
if (reply->error != 0) {
error("Server replied with error %d", reply->error);
}
if (request_raw_handle != reply_raw.handle.w) {
error("Did not reply with correct handle");
}
request->magic = htobe32(REQUEST_MAGIC);
request->type = htobe32(type);
request->handle.w = (((uint64_t)rand()) << 32) | ((uint64_t)rand());
request->from = htobe64(from);
request->len = htobe32(len);
}
void wait_for_data(int fd, int timeout_secs)
void read_reply(int fd, struct nbd_request *request, struct nbd_reply *reply)
{
fd_set fds;
struct timeval tv = { timeout_secs, 0 };
int selected;
struct nbd_reply_raw reply_raw;
FD_ZERO(&fds);
FD_SET(fd, &fds);
ERROR_IF_NEGATIVE(readloop(fd, &reply_raw, sizeof(struct nbd_reply_raw)),
"Couldn't read reply");
selected =
sock_try_select(FD_SETSIZE, &fds, NULL, NULL,
timeout_secs >= 0 ? &tv : NULL);
nbd_r2h_reply( &reply_raw, reply );
FATAL_IF(-1 == selected, "Select failed");
ERROR_IF(0 == selected, "Timed out waiting for reply");
if (reply->magic != REPLY_MAGIC) {
error("Reply magic incorrect (%x)", reply->magic);
}
if (reply->error != 0) {
error("Server replied with error %d", reply->error);
}
if (request->handle.w != reply->handle.w) {
error("Did not reply with correct handle");
}
}
void wait_for_data( int fd, int timeout_secs )
{
fd_set fds;
struct timeval tv = { timeout_secs, 0 };
int selected;
FD_ZERO( &fds );
FD_SET( fd, &fds );
selected = sock_try_select(
FD_SETSIZE, &fds, NULL, NULL, timeout_secs >=0 ? &tv : NULL
);
FATAL_IF( -1 == selected, "Select failed" );
ERROR_IF( 0 == selected, "Timed out waiting for reply" );
}
void socket_nbd_read(int fd, uint64_t from, uint32_t len, int out_fd,
void *out_buf, int timeout_secs)
void socket_nbd_read(int fd, uint64_t from, uint32_t len, int out_fd, void* out_buf, int timeout_secs)
{
struct nbd_request_raw request_raw;
struct nbd_reply reply;
struct nbd_request request;
struct nbd_reply reply;
fill_request(&request_raw, REQUEST_READ, 0, from, len);
FATAL_IF_NEGATIVE(writeloop(fd, &request_raw, sizeof(request_raw)),
"Couldn't write request");
fill_request(&request, REQUEST_READ, from, len);
FATAL_IF_NEGATIVE(writeloop(fd, &request, sizeof(request)),
"Couldn't write request");
wait_for_data( fd, timeout_secs );
read_reply(fd, &request, &reply);
wait_for_data(fd, timeout_secs);
read_reply(fd, request_raw.handle.w, &reply);
if (out_buf) {
FATAL_IF_NEGATIVE(readloop(fd, out_buf, len), "Read failed");
} else {
FATAL_IF_NEGATIVE(splice_via_pipe_loop(fd, out_fd, len),
"Splice failed");
}
if (out_buf) {
FATAL_IF_NEGATIVE(readloop(fd, out_buf, len),
"Read failed");
}
else {
FATAL_IF_NEGATIVE(
splice_via_pipe_loop(fd, out_fd, len),
"Splice failed"
);
}
}
void socket_nbd_write(int fd, uint64_t from, uint32_t len, int in_fd,
void *in_buf, int timeout_secs)
void socket_nbd_write(int fd, uint64_t from, uint32_t len, int in_fd, void* in_buf, int timeout_secs)
{
struct nbd_request_raw request_raw;
struct nbd_reply reply;
struct nbd_request request;
struct nbd_reply reply;
fill_request(&request_raw, REQUEST_WRITE, 0, from, len);
ERROR_IF_NEGATIVE(writeloop(fd, &request_raw, sizeof(request_raw)),
"Couldn't write request");
fill_request(&request, REQUEST_WRITE, from, len);
ERROR_IF_NEGATIVE(writeloop(fd, &request, sizeof(request)),
"Couldn't write request");
if (in_buf) {
ERROR_IF_NEGATIVE(writeloop(fd, in_buf, len), "Write failed");
} else {
ERROR_IF_NEGATIVE(splice_via_pipe_loop(in_fd, fd, len),
"Splice failed");
}
if (in_buf) {
ERROR_IF_NEGATIVE(writeloop(fd, in_buf, len),
"Write failed");
}
else {
ERROR_IF_NEGATIVE(
splice_via_pipe_loop(in_fd, fd, len),
"Splice failed"
);
}
wait_for_data(fd, timeout_secs);
read_reply(fd, request_raw.handle.w, &reply);
wait_for_data( fd, timeout_secs );
read_reply(fd, &request, &reply);
}
int socket_nbd_disconnect(int fd)
int socket_nbd_disconnect( int fd )
{
int success = 1;
struct nbd_request_raw request_raw;
int success = 1;
struct nbd_request request;
fill_request(&request_raw, REQUEST_DISCONNECT, 0, 0, 0);
/* FIXME: This shouldn't be a FATAL error. We should just drop
* the mirror without affecting the main server.
*/
FATAL_IF_NEGATIVE(writeloop(fd, &request_raw, sizeof(request_raw)),
"Failed to write the disconnect request.");
return success;
fill_request( &request, REQUEST_DISCONNECT, 0, 0 );
/* FIXME: This shouldn't be a FATAL error. We should just drop
* the mirror without affecting the main server.
*/
FATAL_IF_NEGATIVE( writeloop( fd, &request, sizeof( request ) ),
"Failed to write the disconnect request." );
return success;
}
#define CHECK_RANGE(error_type) { \
uint64_t size;\
uint32_t flags;\
int success = socket_nbd_read_hello(params->client, &size, &flags); \
int success = socket_nbd_read_hello(params->client, &size); \
if ( success ) {\
uint64_t endpoint = params->from + params->len; \
if (endpoint > size || \
@@ -240,26 +229,23 @@ int socket_nbd_disconnect(int fd)
}\
}
void do_read(struct mode_readwrite_params *params)
void do_read(struct mode_readwrite_params* params)
{
params->client =
socket_connect(&params->connect_to.generic,
&params->connect_from.generic);
FATAL_IF_NEGATIVE(params->client, "Couldn't connect.");
CHECK_RANGE("read");
socket_nbd_read(params->client, params->from, params->len,
params->data_fd, NULL, 10);
close(params->client);
params->client = socket_connect(&params->connect_to.generic, &params->connect_from.generic);
FATAL_IF_NEGATIVE( params->client, "Couldn't connect." );
CHECK_RANGE("read");
socket_nbd_read(params->client, params->from, params->len,
params->data_fd, NULL, 10);
close(params->client);
}
void do_write(struct mode_readwrite_params *params)
void do_write(struct mode_readwrite_params* params)
{
params->client =
socket_connect(&params->connect_to.generic,
&params->connect_from.generic);
FATAL_IF_NEGATIVE(params->client, "Couldn't connect.");
CHECK_RANGE("write");
socket_nbd_write(params->client, params->from, params->len,
params->data_fd, NULL, 10);
close(params->client);
params->client = socket_connect(&params->connect_to.generic, &params->connect_from.generic);
FATAL_IF_NEGATIVE( params->client, "Couldn't connect." );
CHECK_RANGE("write");
socket_nbd_write(params->client, params->from, params->len,
params->data_fd, NULL, 10);
close(params->client);
}

View File

@@ -6,21 +6,18 @@
#include <sys/socket.h>
#include "nbdtypes.h"
int socket_connect(struct sockaddr *to, struct sockaddr *from);
int socket_nbd_read_hello(int fd, uint64_t * size, uint32_t * flags);
int socket_nbd_write_hello(int fd, uint64_t size, uint32_t flags);
void socket_nbd_read(int fd, uint64_t from, uint32_t len, int out_fd,
void *out_buf, int timeout_secs);
void socket_nbd_write(int fd, uint64_t from, uint32_t len, int out_fd,
void *out_buf, int timeout_secs);
int socket_nbd_disconnect(int fd);
int socket_connect(struct sockaddr* to, struct sockaddr* from);
int socket_nbd_read_hello(int fd, uint64_t* size);
int socket_nbd_write_hello(int fd, uint64_t size);
void socket_nbd_read(int fd, uint64_t from, uint32_t len, int out_fd, void* out_buf, int timeout_secs);
void socket_nbd_write(int fd, uint64_t from, uint32_t len, int out_fd, void* out_buf, int timeout_secs);
int socket_nbd_disconnect( int fd );
/* as you can see, we're slowly accumulating code that should really be in an
* NBD library */
void nbd_hello_to_buf(struct nbd_init_raw *buf, uint64_t out_size,
uint32_t out_flags);
int nbd_check_hello(struct nbd_init_raw *init_raw, uint64_t * out_size,
uint32_t * out_flags);
void nbd_hello_to_buf( struct nbd_init_raw* buf, uint64_t out_size );
int nbd_check_hello( struct nbd_init_raw* init_raw, uint64_t* out_size );
#endif

View File

@@ -4,62 +4,64 @@
#include <stdlib.h>
#include <sys/un.h>
static const int max_response = 1024;
static const int max_response=1024;
void print_response(const char *response)
void print_response( const char * response )
{
char *response_text;
FILE *out;
int exit_status;
char * response_text;
FILE * out;
int exit_status;
NULLCHECK(response);
NULLCHECK( response );
exit_status = atoi(response);
response_text = strchr(response, ':');
exit_status = atoi(response);
response_text = strchr( response, ':' );
FATAL_IF_NULL(response_text,
"Error parsing server response: '%s'", response);
FATAL_IF_NULL( response_text,
"Error parsing server response: '%s'", response );
out = exit_status > 0 ? stderr : stdout;
fprintf(out, "%s\n", response_text + 2);
out = exit_status > 0 ? stderr : stdout;
fprintf(out, "%s\n", response_text + 2);
}
void do_remote_command(char *command, char *socket_name, int argc,
char **argv)
void do_remote_command(char* command, char* socket_name, int argc, char** argv)
{
char newline = 10;
int i;
debug("connecting to run remote command %s", command);
int remote = socket(AF_UNIX, SOCK_STREAM, 0);
struct sockaddr_un address;
char response[max_response];
char newline=10;
int i;
debug( "connecting to run remote command %s", command );
int remote = socket(AF_UNIX, SOCK_STREAM, 0);
struct sockaddr_un address;
char response[max_response];
memset(&address, 0, sizeof(address));
memset(&address, 0, sizeof(address));
FATAL_IF_NEGATIVE(remote, "Couldn't create client socket");
FATAL_IF_NEGATIVE(remote, "Couldn't create client socket");
address.sun_family = AF_UNIX;
strncpy(address.sun_path, socket_name, sizeof(address.sun_path));
address.sun_family = AF_UNIX;
strncpy(address.sun_path, socket_name, sizeof(address.sun_path));
FATAL_IF_NEGATIVE(connect
(remote, (struct sockaddr *) &address,
sizeof(address)), "Couldn't connect to %s",
socket_name);
FATAL_IF_NEGATIVE(
connect(remote, (struct sockaddr*) &address, sizeof(address)),
"Couldn't connect to %s", socket_name
);
write(remote, command, strlen(command));
write(remote, &newline, 1);
for (i = 0; i < argc; i++) {
if (NULL != argv[i]) {
write(remote, argv[i], strlen(argv[i]));
write(remote, command, strlen(command));
write(remote, &newline, 1);
for (i=0; i<argc; i++) {
if ( NULL != argv[i] ) {
write(remote, argv[i], strlen(argv[i]));
}
write(remote, &newline, 1);
}
write(remote, &newline, 1);
}
write(remote, &newline, 1);
FATAL_IF_NEGATIVE(read_until_newline(remote, response, max_response),
"Couldn't read response from %s", socket_name);
FATAL_IF_NEGATIVE(
read_until_newline(remote, response, max_response),
"Couldn't read response from %s", socket_name
);
print_response(response);
print_response( response );
exit(atoi(response));
exit(atoi(response));
}

View File

@@ -24,18 +24,18 @@
#include "util.h"
#include "self_pipe.h"
#define ERR_MSG_PIPE "Couldn't open a pipe for signaling."
#define ERR_MSG_PIPE "Couldn't open a pipe for signaling."
#define ERR_MSG_FCNTL "Couldn't set a signalling pipe non-blocking."
#define ERR_MSG_WRITE "Couldn't write to a signaling pipe."
#define ERR_MSG_READ "Couldn't read from a signaling pipe."
void self_pipe_server_error(int err, char *msg)
void self_pipe_server_error( int err, char *msg )
{
char errbuf[1024] = { 0 };
char errbuf[1024] = {0};
strerror_r(err, errbuf, 1024);
strerror_r( err, errbuf, 1024 );
fatal("%s\t%d (%s)", msg, err, errbuf);
fatal( "%s\t%d (%s)", msg, err, errbuf );
}
/**
@@ -47,36 +47,33 @@ void self_pipe_server_error(int err, char *msg)
* Remember to call self_pipe_destroy when you're done with the return
* value.
*/
struct self_pipe *self_pipe_create(void)
struct self_pipe * self_pipe_create(void)
{
struct self_pipe *sig = xmalloc(sizeof(struct self_pipe));
int fds[2];
struct self_pipe *sig = xmalloc( sizeof( struct self_pipe ) );
int fds[2];
if ( NULL == sig ) { return NULL; }
if (NULL == sig) {
return NULL;
}
if ( pipe( fds ) ) {
free( sig );
self_pipe_server_error( errno, ERR_MSG_PIPE );
return NULL;
}
if (pipe(fds)) {
free(sig);
self_pipe_server_error(errno, ERR_MSG_PIPE);
return NULL;
}
if ( fcntl( fds[0], F_SETFL, O_NONBLOCK ) || fcntl( fds[1], F_SETFL, O_NONBLOCK ) ) {
int fcntl_err = errno;
while( close( fds[0] ) == -1 && errno == EINTR );
while( close( fds[1] ) == -1 && errno == EINTR );
free( sig );
self_pipe_server_error( fcntl_err, ERR_MSG_FCNTL );
if (fcntl(fds[0], F_SETFL, O_NONBLOCK)
|| fcntl(fds[1], F_SETFL, O_NONBLOCK)) {
int fcntl_err = errno;
while (close(fds[0]) == -1 && errno == EINTR);
while (close(fds[1]) == -1 && errno == EINTR);
free(sig);
self_pipe_server_error(fcntl_err, ERR_MSG_FCNTL);
return NULL;
}
return NULL;
}
sig->read_fd = fds[0];
sig->write_fd = fds[1];
sig->read_fd = fds[0];
sig->write_fd = fds[1];
return sig;
return sig;
}
@@ -86,19 +83,19 @@ struct self_pipe *self_pipe_create(void)
* Returns 1 on success. Can fail if weirdness happened to the write fd
* of the pipe in the self_pipe struct.
*/
int self_pipe_signal(struct self_pipe *sig)
int self_pipe_signal( struct self_pipe * sig )
{
NULLCHECK(sig);
FATAL_IF(1 == sig->write_fd, "Shouldn't be writing to stdout");
FATAL_IF(2 == sig->write_fd, "Shouldn't be writing to stderr");
NULLCHECK( sig );
FATAL_IF( 1 == sig->write_fd, "Shouldn't be writing to stdout" );
FATAL_IF( 2 == sig->write_fd, "Shouldn't be writing to stderr" );
int written = write(sig->write_fd, "X", 1);
if (written != 1) {
self_pipe_server_error(errno, ERR_MSG_WRITE);
return 0;
}
int written = write( sig->write_fd, "X", 1 );
if ( written != 1 ) {
self_pipe_server_error( errno, ERR_MSG_WRITE );
return 0;
}
return 1;
return 1;
}
@@ -109,11 +106,11 @@ int self_pipe_signal(struct self_pipe *sig)
* Returns the number of bytes read, which will be 1 on success and 0 if
* there was no signal.
*/
int self_pipe_signal_clear(struct self_pipe *sig)
int self_pipe_signal_clear( struct self_pipe *sig )
{
char buf[1];
char buf[1];
return 1 == read(sig->read_fd, buf, 1);
return 1 == read( sig->read_fd, buf, 1 );
}
@@ -121,30 +118,30 @@ int self_pipe_signal_clear(struct self_pipe *sig)
* Close the pipe and free the self_pipe. Do not try to use the
* self_pipe struct after calling this, the innards are mush.
*/
int self_pipe_destroy(struct self_pipe *sig)
int self_pipe_destroy( struct self_pipe * sig )
{
NULLCHECK(sig);
NULLCHECK(sig);
while (close(sig->read_fd) == -1 && errno == EINTR);
while (close(sig->write_fd) == -1 && errno == EINTR);
while( close( sig->read_fd ) == -1 && errno == EINTR );
while( close( sig->write_fd ) == -1 && errno == EINTR );
/* Just in case anyone *does* try to use this after free,
* we should set the memory locations to an error value
*/
sig->read_fd = -1;
sig->write_fd = -1;
/* Just in case anyone *does* try to use this after free,
* we should set the memory locations to an error value
*/
sig->read_fd = -1;
sig->write_fd = -1;
free(sig);
return 1;
free( sig );
return 1;
}
int self_pipe_fd_set(struct self_pipe *sig, fd_set * fds)
int self_pipe_fd_set( struct self_pipe * sig, fd_set * fds)
{
FD_SET(sig->read_fd, fds);
return 1;
FD_SET( sig->read_fd, fds );
return 1;
}
int self_pipe_fd_isset(struct self_pipe *sig, fd_set * fds)
int self_pipe_fd_isset( struct self_pipe * sig, fd_set * fds)
{
return FD_ISSET(sig->read_fd, fds);
return FD_ISSET( sig->read_fd, fds );
}

View File

@@ -4,16 +4,16 @@
#include <sys/select.h>
struct self_pipe {
int read_fd;
int write_fd;
int read_fd;
int write_fd;
};
struct self_pipe *self_pipe_create(void);
int self_pipe_signal(struct self_pipe *sig);
int self_pipe_signal_clear(struct self_pipe *sig);
int self_pipe_destroy(struct self_pipe *sig);
int self_pipe_fd_set(struct self_pipe *sig, fd_set * fds);
int self_pipe_fd_isset(struct self_pipe *sig, fd_set * fds);
struct self_pipe * self_pipe_create(void);
int self_pipe_signal( struct self_pipe * sig );
int self_pipe_signal_clear( struct self_pipe *sig );
int self_pipe_destroy( struct self_pipe * sig );
int self_pipe_fd_set( struct self_pipe * sig, fd_set * fds );
int self_pipe_fd_isset( struct self_pipe *sig, fd_set *fds );
#endif

View File

@@ -9,287 +9,248 @@
#include "sockutil.h"
#include "util.h"
size_t sockaddr_size(const struct sockaddr * sa)
size_t sockaddr_size( const struct sockaddr* sa )
{
struct sockaddr_un *un = (struct sockaddr_un *) sa;
size_t ret = 0;
struct sockaddr_un* un = (struct sockaddr_un*) sa;
size_t ret = 0;
switch (sa->sa_family) {
case AF_INET:
ret = sizeof(struct sockaddr_in);
break;
case AF_INET6:
ret = sizeof(struct sockaddr_in6);
break;
case AF_UNIX:
ret = sizeof(un->sun_family) + SUN_LEN(un);
break;
}
switch( sa->sa_family ) {
case AF_INET:
ret = sizeof( struct sockaddr_in );
break;
case AF_INET6:
ret = sizeof( struct sockaddr_in6 );
break;
case AF_UNIX:
ret = sizeof( un->sun_family ) + SUN_LEN( un );
break;
}
return ret;
return ret;
}
const char *sockaddr_address_string(const struct sockaddr *sa, char *dest,
size_t len)
const char* sockaddr_address_string( const struct sockaddr* sa, char* dest, size_t len )
{
NULLCHECK(sa);
NULLCHECK(dest);
NULLCHECK( sa );
NULLCHECK( dest );
struct sockaddr_in *in = (struct sockaddr_in *) sa;
struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) sa;
struct sockaddr_un *un = (struct sockaddr_un *) sa;
struct sockaddr_in* in = ( struct sockaddr_in* ) sa;
struct sockaddr_in6* in6 = ( struct sockaddr_in6* ) sa;
struct sockaddr_un* un = ( struct sockaddr_un* ) sa;
unsigned short real_port = ntohs(in->sin_port); // common to in and in6
const char *ret = NULL;
unsigned short real_port = ntohs( in->sin_port ); // common to in and in6
const char* ret = NULL;
memset(dest, 0, len);
memset( dest, 0, len );
if (sa->sa_family == AF_INET) {
ret = inet_ntop(AF_INET, &in->sin_addr, dest, len);
} else if (sa->sa_family == AF_INET6) {
ret = inet_ntop(AF_INET6, &in6->sin6_addr, dest, len);
} else if (sa->sa_family == AF_UNIX) {
ret = strncpy(dest, un->sun_path, SUN_LEN(un));
}
if ( sa->sa_family == AF_INET ) {
ret = inet_ntop( AF_INET, &in->sin_addr, dest, len );
} else if ( sa->sa_family == AF_INET6 ) {
ret = inet_ntop( AF_INET6, &in6->sin6_addr, dest, len );
} else if ( sa->sa_family == AF_UNIX ) {
ret = strncpy( dest, un->sun_path, SUN_LEN( un ) );
}
if (ret == NULL) {
strncpy(dest, "???", len);
}
if ( ret == NULL ) {
strncpy( dest, "???", len );
}
if (NULL != ret && real_port > 0 && sa->sa_family != AF_UNIX) {
size_t size = strlen(dest);
snprintf(dest + size, len - size, " port %d", real_port);
}
if ( NULL != ret && real_port > 0 && sa->sa_family != AF_UNIX ) {
size_t size = strlen( dest );
snprintf( dest + size, len - size, " port %d", real_port );
}
return ret;
return ret;
}
int sock_set_reuseaddr(int fd, int optval)
int sock_set_reuseaddr( int fd, int optval )
{
return setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &optval,
sizeof(optval));
}
int sock_set_keepalive_params(int fd, int time, int intvl, int probes)
{
if (sock_set_keepalive(fd, 1) ||
sock_set_tcp_keepidle(fd, time) ||
sock_set_tcp_keepintvl(fd, intvl) ||
sock_set_tcp_keepcnt(fd, probes)) {
return -1;
}
return 0;
}
int sock_set_keepalive(int fd, int optval)
{
return setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, &optval,
sizeof(optval));
}
int sock_set_tcp_keepidle(int fd, int optval)
{
return setsockopt(fd, IPPROTO_TCP, TCP_KEEPIDLE, &optval,
sizeof(optval));
}
int sock_set_tcp_keepintvl(int fd, int optval)
{
return setsockopt(fd, IPPROTO_TCP, TCP_KEEPINTVL, &optval,
sizeof(optval));
}
int sock_set_tcp_keepcnt(int fd, int optval)
{
return setsockopt(fd, IPPROTO_TCP, TCP_KEEPCNT, &optval,
sizeof(optval));
return setsockopt( fd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval) );
}
/* Set the tcp_nodelay option */
int sock_set_tcp_nodelay(int fd, int optval)
int sock_set_tcp_nodelay( int fd, int optval )
{
return setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, &optval,
sizeof(optval));
return setsockopt( fd, IPPROTO_TCP, TCP_NODELAY, &optval, sizeof(optval) );
}
int sock_set_tcp_cork(int fd, int optval)
int sock_set_tcp_cork( int fd, int optval )
{
return setsockopt(fd, IPPROTO_TCP, TCP_CORK, &optval, sizeof(optval));
return setsockopt( fd, IPPROTO_TCP, TCP_CORK, &optval, sizeof(optval) );
}
int sock_set_nonblock(int fd, int optval)
int sock_set_nonblock( int fd, int optval )
{
int flags = fcntl(fd, F_GETFL);
int flags = fcntl( fd, F_GETFL );
if (flags == -1) {
return -1;
}
if ( flags == -1 ) {
return -1;
}
if (optval) {
flags = flags | O_NONBLOCK;
} else {
flags = flags & (~O_NONBLOCK);
}
return fcntl(fd, F_SETFL, flags);
}
int sock_try_bind(int fd, const struct sockaddr *sa)
{
int bind_result;
char s_address[256];
int retry = 10;
sockaddr_address_string(sa, &s_address[0], 256);
do {
bind_result = bind(fd, sa, sockaddr_size(sa));
if (0 == bind_result) {
info("Bound to %s", s_address);
break;
if ( optval ) {
flags = flags | O_NONBLOCK;
} else {
warn(SHOW_ERRNO("Couldn't bind to %s", s_address));
flags = flags & (~O_NONBLOCK);
}
switch (errno) {
/* bind() can give us EACCES, EADDRINUSE, EADDRNOTAVAIL, EBADF,
* EINVAL, ENOTSOCK, EFAULT, ELOOP, ENAMETOOLONG, ENOENT,
* ENOMEM, ENOTDIR, EROFS
*
* Any of these other than EADDRINUSE & EADDRNOTAVAIL signify
* that there's a logic error somewhere.
*
* EADDRINUSE is fatal: if there's something already where we
* want to be listening, we have no guarantees that any clients
* will cope with it.
*/
case EADDRNOTAVAIL:
retry--;
if (retry) {
debug("retrying");
sleep(1);
return fcntl( fd, F_SETFL, flags );
}
int sock_try_bind( int fd, const struct sockaddr* sa )
{
int bind_result;
char s_address[256];
int retry = 10;
sockaddr_address_string( sa, &s_address[0], 256 );
do {
bind_result = bind( fd, sa, sockaddr_size( sa ) );
if ( 0 == bind_result ) {
info( "Bound to %s", s_address );
break;
}
continue;
case EADDRINUSE:
warn("%s in use, giving up.", s_address);
retry = 0;
break;
default:
warn("giving up");
retry = 0;
}
}
} while (retry);
else {
warn( SHOW_ERRNO( "Couldn't bind to %s", s_address ) );
return bind_result;
switch ( errno ) {
/* bind() can give us EACCES, EADDRINUSE, EADDRNOTAVAIL, EBADF,
* EINVAL, ENOTSOCK, EFAULT, ELOOP, ENAMETOOLONG, ENOENT,
* ENOMEM, ENOTDIR, EROFS
*
* Any of these other than EADDRINUSE & EADDRNOTAVAIL signify
* that there's a logic error somewhere.
*
* EADDRINUSE is fatal: if there's something already where we
* want to be listening, we have no guarantees that any clients
* will cope with it.
*/
case EADDRNOTAVAIL:
retry--;
if (retry) {
debug( "retrying" );
sleep( 1 );
}
continue;
case EADDRINUSE:
warn( "%s in use, giving up.", s_address );
retry = 0;
break;
default:
warn( "giving up" );
retry = 0;
}
}
} while ( retry );
return bind_result;
}
int sock_try_select(int nfds, fd_set * readfds, fd_set * writefds,
fd_set * exceptfds, struct timeval *timeout)
int sock_try_select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout)
{
int result;
int result;
do {
result = select(nfds, readfds, writefds, exceptfds, timeout);
if (errno != EINTR) {
break;
}
do {
result = select(nfds, readfds, writefds, exceptfds, timeout);
if ( errno != EINTR ) {
break;
}
} while (result == -1);
} while ( result == -1 );
return result;
return result;
}
int sock_try_connect(int fd, struct sockaddr *to, socklen_t addrlen,
int wait)
int sock_try_connect( int fd, struct sockaddr* to, socklen_t addrlen, int wait )
{
fd_set fds;
struct timeval tv = { wait, 0 };
int result = 0;
fd_set fds;
struct timeval tv = { wait, 0 };
int result = 0;
if (sock_set_nonblock(fd, 1) == -1) {
warn(SHOW_ERRNO
("Failed to set socket non-blocking for connect()"));
return connect(fd, to, addrlen);
}
if ( sock_set_nonblock( fd, 1 ) == -1 ) {
warn( SHOW_ERRNO( "Failed to set socket non-blocking for connect()" ) );
return connect( fd, to, addrlen );
}
FD_ZERO(&fds);
FD_SET(fd, &fds);
FD_ZERO( &fds );
FD_SET( fd, &fds );
do {
result = connect(fd, to, addrlen);
do {
result = connect( fd, to, addrlen );
if (result == -1) {
switch (errno) {
case EINPROGRESS:
result = 0;
break; /* success */
case EAGAIN:
case EINTR:
/* Try connect() again. This only breaks out of the switch,
* not the do...while loop. since result == -1, we go again.
*/
break;
default:
warn(SHOW_ERRNO("Failed to connect()"));
if ( result == -1 ) {
switch( errno ) {
case EINPROGRESS:
result = 0;
break; /* success */
case EAGAIN:
case EINTR:
/* Try connect() again. This only breaks out of the switch,
* not the do...while loop. since result == -1, we go again.
*/
break;
default:
warn( SHOW_ERRNO( "Failed to connect()" ) );
goto out;
}
}
} while ( result == -1 );
if ( -1 == sock_try_select( FD_SETSIZE, NULL, &fds, NULL, &tv) ) {
warn( SHOW_ERRNO( "failed to select() on non-blocking connect" ) );
result = -1;
goto out;
}
}
} while (result == -1);
if (-1 == sock_try_select(FD_SETSIZE, NULL, &fds, NULL, &tv)) {
warn(SHOW_ERRNO("failed to select() on non-blocking connect"));
result = -1;
goto out;
}
if ( !FD_ISSET( fd, &fds ) ) {
result = -1;
errno = ETIMEDOUT;
goto out;
}
if (!FD_ISSET(fd, &fds)) {
result = -1;
errno = ETIMEDOUT;
goto out;
}
int scratch;
socklen_t s_size = sizeof( scratch );
if ( getsockopt( fd, SOL_SOCKET, SO_ERROR, &scratch, &s_size ) == -1 ) {
result = -1;
warn( SHOW_ERRNO( "getsockopt() failed" ) );
goto out;
}
int scratch;
socklen_t s_size = sizeof(scratch);
if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &scratch, &s_size) == -1) {
result = -1;
warn(SHOW_ERRNO("getsockopt() failed"));
goto out;
}
if ( scratch == EINPROGRESS ) {
scratch = ETIMEDOUT;
}
if (scratch == EINPROGRESS) {
scratch = ETIMEDOUT;
}
result = scratch ? -1 : 0;
errno = scratch;
result = scratch ? -1 : 0;
errno = scratch;
out:
if ( sock_set_nonblock( fd, 0 ) == -1 ) {
warn( SHOW_ERRNO( "Failed to make socket blocking after connect()" ) );
return -1;
}
out:
if (sock_set_nonblock(fd, 0) == -1) {
warn(SHOW_ERRNO("Failed to make socket blocking after connect()"));
return -1;
}
debug("sock_try_connect: %i", result);
return result;
debug( "sock_try_connect: %i", result );
return result;
}
int sock_try_close(int fd)
int sock_try_close( int fd )
{
int result;
int result;
do {
result = close(fd);
do {
result = close( fd );
if (result == -1) {
if (EINTR == errno) {
continue; /* retry EINTR */
} else {
warn(SHOW_ERRNO("Failed to close() fd %i", fd));
break; /* Other errors get reported */
}
}
if ( result == -1 ) {
if ( EINTR == errno ) {
continue; /* retry EINTR */
} else {
warn( SHOW_ERRNO( "Failed to close() fd %i", fd ) );
break; /* Other errors get reported */
}
}
} while (0);
} while( 0 );
return result;
return result;
}

View File

@@ -7,32 +7,16 @@
#include <sys/select.h>
/* Returns the size of the sockaddr, or 0 on error */
size_t sockaddr_size(const struct sockaddr *sa);
size_t sockaddr_size(const struct sockaddr* sa);
/* Convert a sockaddr into an address. Like inet_ntop, it returns dest if
* successful, NULL otherwise. In the latter case, dest will contain "???"
*/
const char *sockaddr_address_string(const struct sockaddr *sa, char *dest,
size_t len);
/* Configure TCP keepalive on a socket */
int sock_set_keepalive_params(int fd, int time, int intvl, int probes);
/* Set the SOL_KEEPALIVE otion */
int sock_set_keepalive(int fd, int optval);
const char* sockaddr_address_string(const struct sockaddr* sa, char* dest, size_t len);
/* Set the SOL_REUSEADDR otion */
int sock_set_reuseaddr(int fd, int optval);
/* Set the tcp_keepidle option */
int sock_set_tcp_keepidle(int fd, int optval);
/* Set the tcp_keepintvl option */
int sock_set_tcp_keepintvl(int fd, int optval);
/* Set the tcp_keepcnt option */
int sock_set_tcp_keepcnt(int fd, int optval);
/* Set the tcp_nodelay option */
int sock_set_tcp_nodelay(int fd, int optval);
@@ -42,17 +26,16 @@ int sock_set_tcp_cork(int fd, int optval);
int sock_set_nonblock(int fd, int optval);
/* Attempt to bind the fd to the sockaddr, retrying common transient failures */
int sock_try_bind(int fd, const struct sockaddr *sa);
int sock_try_bind(int fd, const struct sockaddr* sa);
/* Try to call select(), retrying EINTR */
int sock_try_select(int nfds, fd_set * readfds, fd_set * writefds,
fd_set * exceptfds, struct timeval *timeout);
int sock_try_select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
/* Try to call connect(), timing out after wait seconds */
int sock_try_connect(int fd, struct sockaddr *to, socklen_t addrlen,
int wait);
int sock_try_connect( int fd, struct sockaddr* to, socklen_t addrlen, int wait );
/* Try to call close(), retrying EINTR */
int sock_try_close(int fd);
int sock_try_close( int fd );
#endif

View File

@@ -13,79 +13,75 @@
pthread_key_t cleanup_handler_key;
int log_level = 2;
char *log_context = "";
void error_init(void)
{
pthread_key_create(&cleanup_handler_key, free);
pthread_key_create(&cleanup_handler_key, free);
}
void error_handler(int fatal)
{
DECLARE_ERROR_CONTEXT(context);
DECLARE_ERROR_CONTEXT(context);
if (context) {
longjmp(context->jmp, fatal ? 1 : 2);
} else {
if (fatal) {
abort();
} else {
pthread_exit((void *) 1);
if (context) {
longjmp(context->jmp, fatal ? 1 : 2 );
}
else {
if ( fatal ) { abort(); }
else { pthread_exit((void*) 1); }
}
}
}
void exit_err(const char *msg)
void exit_err( const char *msg )
{
fprintf(stderr, "%s\n", msg);
exit(1);
fprintf( stderr, "%s\n", msg );
exit( 1 );
}
void mylog(int line_level, const char *format, ...)
void mylog(int line_level, const char* format, ...)
{
if (line_level < log_level) {
return;
}
if (line_level < log_level) { return; }
va_list argptr;
va_list argptr;
va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);
va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);
}
uint64_t monotonic_time_ms()
{
struct timespec ts;
uint64_t seconds_ms, nanoseconds_ms;
struct timespec ts;
uint64_t seconds_ms, nanoseconds_ms;
FATAL_IF_NEGATIVE(clock_gettime(CLOCK_MONOTONIC, &ts),
SHOW_ERRNO("clock_gettime failed")
FATAL_IF_NEGATIVE(
clock_gettime(CLOCK_MONOTONIC, &ts),
SHOW_ERRNO( "clock_gettime failed" )
);
seconds_ms = ts.tv_sec;
seconds_ms = seconds_ms * 1000;
seconds_ms = ts.tv_sec;
seconds_ms = seconds_ms * 1000;
nanoseconds_ms = ts.tv_nsec;
nanoseconds_ms = nanoseconds_ms / 1000000;
nanoseconds_ms = ts.tv_nsec;
nanoseconds_ms = nanoseconds_ms / 1000000;
return seconds_ms + nanoseconds_ms;
return seconds_ms + nanoseconds_ms;
}
void *xrealloc(void *ptr, size_t size)
void* xrealloc(void* ptr, size_t size)
{
void *p = realloc(ptr, size);
FATAL_IF_NULL(p, "couldn't xrealloc %d bytes",
ptr ? "realloc" : "malloc", size);
return p;
void* p = realloc(ptr, size);
FATAL_IF_NULL(p, "couldn't xrealloc %d bytes", ptr ? "realloc" : "malloc", size);
return p;
}
void *xmalloc(size_t size)
void* xmalloc(size_t size)
{
void *p = xrealloc(NULL, size);
memset(p, 0, size);
return p;
void* p = xrealloc(NULL, size);
memset(p, 0, size);
return p;
}

View File

@@ -10,11 +10,10 @@
#include <unistd.h>
#include <inttypes.h>
void *xrealloc(void *ptr, size_t size);
void *xmalloc(size_t size);
void* xrealloc(void* ptr, size_t size);
void* xmalloc(size_t size);
typedef void (cleanup_handler) (void * /* context */ ,
int /* is fatal? */ );
typedef void (cleanup_handler)(void* /* context */, int /* is fatal? */);
/* set from 0 - 5 depending on what level of verbosity you want */
extern int log_level;
@@ -22,19 +21,16 @@ extern int log_level;
/* set up the error globals */
void error_init(void);
/* some context for the overall process that appears on each log line */
extern char *log_context;
void exit_err(const char *);
void exit_err( const char * );
/* error_set_handler must be a macro not a function due to setjmp stack rules */
#include <setjmp.h>
struct error_handler_context {
jmp_buf jmp;
cleanup_handler *handler;
void *data;
jmp_buf jmp;
cleanup_handler* handler;
void* data;
};
#define DECLARE_ERROR_CONTEXT(name) \
@@ -88,7 +84,7 @@ extern pthread_key_t cleanup_handler_key;
void error_handler(int fatal);
/* mylog a line at the given level (0 being most verbose) */
void mylog(int line_level, const char *format, ...);
void mylog(int line_level, const char* format, ...);
/* Returns the current time, in milliseconds, from CLOCK_MONOTONIC */
uint64_t monotonic_time_ms(void);
@@ -96,12 +92,12 @@ uint64_t monotonic_time_ms(void);
#define levstr(i) (i==0?'D':(i==1?'I':(i==2?'W':(i==3?'E':'F'))))
#define myloglev(level, msg, ...) mylog( level, "%"PRIu64":%c:%d %p %s %s:%d: "msg"\n", monotonic_time_ms(), levstr(level), getpid(),pthread_self(), log_context, __FILE__, __LINE__, ##__VA_ARGS__ )
#define myloglev(level, msg, ...) mylog( level, "%"PRIu64":%c:%d %p %s:%d: "msg"\n", monotonic_time_ms(), levstr(level), getpid(),pthread_self(), __FILE__, __LINE__, ##__VA_ARGS__ )
#ifdef DEBUG
#define debug(msg, ...) myloglev(0, msg, ##__VA_ARGS__)
# define debug(msg, ...) myloglev(0, msg, ##__VA_ARGS__)
#else
#define debug(msg, ...) /* no-op */
# define debug(msg, ...) /* no-op */
#endif
/* informational message, not expected to be compiled out */
@@ -163,3 +159,4 @@ uint64_t monotonic_time_ms(void);
#define WARN_IF_NEGATIVE( value, msg, ... ) if ( value < 0 ) { warn( msg, ##__VA_ARGS__ ); }
#endif

View File

@@ -5,17 +5,18 @@
#include <stdlib.h>
#include <time.h>
int main(int argc, char **argv)
int main(int argc, char** argv)
{
signal(SIGPIPE, SIG_IGN); /* calls to splice() unhelpfully throw this */
error_init();
signal(SIGPIPE, SIG_IGN); /* calls to splice() unhelpfully throw this */
error_init();
srand(time(NULL));
srand(time(NULL));
if (argc < 2) {
exit_err(help_help_text);
}
mode(argv[1], argc - 1, argv + 1); /* never returns */
if (argc < 2) {
exit_err( help_help_text );
}
mode(argv[1], argc-1, argv+1); /* never returns */
return 0;
return 0;
}

View File

@@ -8,158 +8,164 @@
static struct option proxy_options[] = {
GETOPT_HELP,
GETOPT_ADDR,
GETOPT_PORT,
GETOPT_CONNECT_ADDR,
GETOPT_CONNECT_PORT,
GETOPT_BIND,
GETOPT_CACHE,
GETOPT_QUIET,
GETOPT_VERBOSE,
{0}
GETOPT_HELP,
GETOPT_ADDR,
GETOPT_PORT,
GETOPT_CONNECT_ADDR,
GETOPT_CONNECT_PORT,
GETOPT_BIND,
GETOPT_CACHE,
GETOPT_QUIET,
GETOPT_VERBOSE,
{0}
};
static char proxy_short_options[] = "hl:p:C:P:b:" SOPT_QUIET SOPT_VERBOSE;
static char proxy_help_text[] =
"Usage: flexnbd-proxy <options>\n\n"
"Resiliently proxy an NBD connection between client and server\n"
"We can listen on TCP or UNIX socket, but only connect to TCP servers.\n\n"
HELP_LINE
"\t--" OPT_ADDR ",-l <ADDR>\tThe address we will bind to as a proxy.\n"
"\t--" OPT_PORT
",-p <PORT>\tThe port we will bind to as a proxy, if required.\n"
"\t--" OPT_CONNECT_ADDR ",-C <ADDR>\tAddress of the proxied server.\n"
"\t--" OPT_CONNECT_PORT ",-P <PORT>\tPort of the proxied server.\n"
"\t--" OPT_BIND
",-b <ADDR>\tThe address we connect from, as a proxy.\n" "\t--"
OPT_CACHE
",-c[=<CACHE-BYTES>]\tUse a RAM read cache of the given size.\n"
QUIET_LINE VERBOSE_LINE;
"Usage: flexnbd-proxy <options>\n\n"
"Resiliently proxy an NBD connection between client and server\n"
"We can listen on TCP or UNIX socket, but only connect to TCP servers.\n\n"
HELP_LINE
"\t--" OPT_ADDR ",-l <ADDR>\tThe address we will bind to as a proxy.\n"
"\t--" OPT_PORT ",-p <PORT>\tThe port we will bind to as a proxy, if required.\n"
"\t--" OPT_CONNECT_ADDR ",-C <ADDR>\tAddress of the proxied server.\n"
"\t--" OPT_CONNECT_PORT ",-P <PORT>\tPort of the proxied server.\n"
"\t--" OPT_BIND ",-b <ADDR>\tThe address we connect from, as a proxy.\n"
"\t--" OPT_CACHE ",-c[=<CACHE-BYTES>]\tUse a RAM read cache of the given size.\n"
QUIET_LINE
VERBOSE_LINE;
static char proxy_default_cache_size[] = "4096";
void read_proxy_param(int c,
char **downstream_addr,
char **downstream_port,
char **upstream_addr,
char **upstream_port,
char **bind_addr, char **cache_bytes)
void read_proxy_param(
int c,
char **downstream_addr,
char **downstream_port,
char **upstream_addr,
char **upstream_port,
char **bind_addr,
char **cache_bytes)
{
switch (c) {
case 'h':
fprintf(stdout, "%s\n", proxy_help_text);
exit(0);
case 'l':
*downstream_addr = optarg;
break;
case 'p':
*downstream_port = optarg;
break;
case 'C':
*upstream_addr = optarg;
break;
case 'P':
*upstream_port = optarg;
break;
case 'b':
*bind_addr = optarg;
break;
case 'c':
*cache_bytes = optarg ? optarg : proxy_default_cache_size;
break;
case 'q':
log_level = QUIET_LOG_LEVEL;
break;
case 'v':
log_level = VERBOSE_LOG_LEVEL;
break;
default:
exit_err(proxy_help_text);
break;
}
switch( c ) {
case 'h' :
fprintf( stdout, "%s\n", proxy_help_text );
exit( 0 );
case 'l':
*downstream_addr = optarg;
break;
case 'p':
*downstream_port = optarg;
break;
case 'C':
*upstream_addr = optarg;
break;
case 'P':
*upstream_port = optarg;
break;
case 'b':
*bind_addr = optarg;
break;
case 'c':
*cache_bytes = optarg ? optarg : proxy_default_cache_size;
break;
case 'q':
log_level = QUIET_LOG_LEVEL;
break;
case 'v':
log_level = VERBOSE_LOG_LEVEL;
break;
default:
exit_err( proxy_help_text );
break;
}
}
struct proxier *proxy = NULL;
struct proxier * proxy = NULL;
void my_exit(int signum)
{
info("Exit signalled (%i)", signum);
if (NULL != proxy) {
proxy_cleanup(proxy);
};
exit(0);
info( "Exit signalled (%i)", signum );
if ( NULL != proxy ) {
proxy_cleanup( proxy );
};
exit( 0 );
}
int main(int argc, char *argv[])
int main( int argc, char *argv[] )
{
int c;
char *downstream_addr = NULL;
char *downstream_port = NULL;
char *upstream_addr = NULL;
char *upstream_port = NULL;
char *bind_addr = NULL;
char *cache_bytes = NULL;
int success;
int c;
char *downstream_addr = NULL;
char *downstream_port = NULL;
char *upstream_addr = NULL;
char *upstream_port = NULL;
char *bind_addr = NULL;
char *cache_bytes = NULL;
int success;
sigset_t mask;
struct sigaction exit_action;
sigset_t mask;
struct sigaction exit_action;
sigemptyset(&mask);
sigaddset(&mask, SIGTERM);
sigaddset(&mask, SIGQUIT);
sigaddset(&mask, SIGINT);
sigemptyset( &mask );
sigaddset( &mask, SIGTERM );
sigaddset( &mask, SIGQUIT );
sigaddset( &mask, SIGINT );
exit_action.sa_handler = my_exit;
exit_action.sa_mask = mask;
exit_action.sa_flags = 0;
exit_action.sa_handler = my_exit;
exit_action.sa_mask = mask;
exit_action.sa_flags = 0;
srand(time(NULL));
srand(time(NULL));
while (1) {
c = getopt_long(argc, argv, proxy_short_options, proxy_options,
NULL);
if (-1 == c) {
break;
while (1) {
c = getopt_long( argc, argv, proxy_short_options, proxy_options, NULL );
if ( -1 == c ) { break; }
read_proxy_param( c,
&downstream_addr,
&downstream_port,
&upstream_addr,
&upstream_port,
&bind_addr,
&cache_bytes
);
}
read_proxy_param(c,
&downstream_addr,
&downstream_port,
&upstream_addr,
&upstream_port, &bind_addr, &cache_bytes);
}
if (NULL == downstream_addr) {
fprintf(stderr, "--addr is required.\n");
exit_err(proxy_help_text);
} else if (NULL == upstream_addr || NULL == upstream_port) {
fprintf(stderr,
"both --conn-addr and --conn-port are required.\n");
exit_err(proxy_help_text);
}
if ( NULL == downstream_addr ){
fprintf( stderr, "--addr is required.\n" );
exit_err( proxy_help_text );
} else if ( NULL == upstream_addr || NULL == upstream_port ){
fprintf( stderr, "both --conn-addr and --conn-port are required.\n" );
exit_err( proxy_help_text );
}
proxy = proxy_create(downstream_addr,
downstream_port,
upstream_addr,
upstream_port, bind_addr, cache_bytes);
proxy = proxy_create(
downstream_addr,
downstream_port,
upstream_addr,
upstream_port,
bind_addr,
cache_bytes
);
/* Set these *after* proxy has been assigned to */
sigaction(SIGTERM, &exit_action, NULL);
sigaction(SIGQUIT, &exit_action, NULL);
sigaction(SIGINT, &exit_action, NULL);
signal(SIGPIPE, SIG_IGN); /* calls to splice() unhelpfully throw this */
/* Set these *after* proxy has been assigned to */
sigaction(SIGTERM, &exit_action, NULL);
sigaction(SIGQUIT, &exit_action, NULL);
sigaction(SIGINT, &exit_action, NULL);
signal(SIGPIPE, SIG_IGN); /* calls to splice() unhelpfully throw this */
if (NULL != downstream_port) {
info("Proxying between %s %s (downstream) and %s %s (upstream)",
downstream_addr, downstream_port, upstream_addr,
upstream_port);
} else {
info("Proxying between %s (downstream) and %s %s (upstream)",
downstream_addr, upstream_addr, upstream_port);
}
if ( NULL != downstream_port ) {
info(
"Proxying between %s %s (downstream) and %s %s (upstream)",
downstream_addr, downstream_port, upstream_addr, upstream_port
);
} else {
info(
"Proxying between %s (downstream) and %s %s (upstream)",
downstream_addr, upstream_addr, upstream_port
);
}
success = do_proxy(proxy);
proxy_destroy(proxy);
success = do_proxy( proxy );
proxy_destroy( proxy );
return success ? 0 : 1;
return success ? 0 : 1;
}

View File

@@ -2,77 +2,67 @@
#include "util.h"
struct prefetch *prefetch_create(size_t size_bytes)
{
struct prefetch* prefetch_create( size_t size_bytes ){
struct prefetch *out = xmalloc(sizeof(struct prefetch));
NULLCHECK(out);
struct prefetch* out = xmalloc( sizeof( struct prefetch ) );
NULLCHECK( out );
out->buffer = xmalloc( size_bytes );
NULLCHECK( out->buffer );
out->buffer = xmalloc(size_bytes);
NULLCHECK(out->buffer);
out->size = size_bytes;
out->is_full = 0;
out->from = 0;
out->len = 0;
out->size = size_bytes;
out->is_full = 0;
out->from = 0;
out->len = 0;
return out;
return out;
}
void prefetch_destroy(struct prefetch *prefetch)
{
if (prefetch) {
free(prefetch->buffer);
free(prefetch);
}
void prefetch_destroy( struct prefetch *prefetch ) {
if( prefetch ) {
free( prefetch->buffer );
free( prefetch );
}
}
size_t prefetch_size(struct prefetch *prefetch)
{
if (prefetch) {
return prefetch->size;
} else {
return 0;
}
size_t prefetch_size( struct prefetch *prefetch){
if ( prefetch ) {
return prefetch->size;
} else {
return 0;
}
}
void prefetch_set_is_empty(struct prefetch *prefetch)
{
prefetch_set_full(prefetch, 0);
void prefetch_set_is_empty( struct prefetch *prefetch ){
prefetch_set_full( prefetch, 0 );
}
void prefetch_set_is_full(struct prefetch *prefetch)
{
prefetch_set_full(prefetch, 1);
void prefetch_set_is_full( struct prefetch *prefetch ){
prefetch_set_full( prefetch, 1 );
}
void prefetch_set_full(struct prefetch *prefetch, int val)
{
if (prefetch) {
prefetch->is_full = val;
}
void prefetch_set_full( struct prefetch *prefetch, int val ){
if( prefetch ) {
prefetch->is_full = val;
}
}
int prefetch_is_full(struct prefetch *prefetch)
{
if (prefetch) {
return prefetch->is_full;
} else {
return 0;
}
int prefetch_is_full( struct prefetch *prefetch ){
if( prefetch ) {
return prefetch->is_full;
} else {
return 0;
}
}
int prefetch_contains(struct prefetch *prefetch, uint64_t from,
uint32_t len)
{
NULLCHECK(prefetch);
return from >= prefetch->from &&
from + len <= prefetch->from + prefetch->len;
int prefetch_contains( struct prefetch *prefetch, uint64_t from, uint32_t len ){
NULLCHECK( prefetch );
return from >= prefetch->from &&
from + len <= prefetch->from + prefetch->len;
}
char *prefetch_offset(struct prefetch *prefetch, uint64_t from)
{
NULLCHECK(prefetch);
return prefetch->buffer + (from - prefetch->from);
char *prefetch_offset( struct prefetch *prefetch, uint64_t from ){
NULLCHECK( prefetch );
return prefetch->buffer + (from - prefetch->from);
}

View File

@@ -7,28 +7,27 @@
#define PREFETCH_BUFSIZE 4096
struct prefetch {
/* True if there is data in the buffer. */
int is_full;
/* The start point of the current content of buffer */
uint64_t from;
/* The length of the current content of buffer */
uint32_t len;
/* True if there is data in the buffer. */
int is_full;
/* The start point of the current content of buffer */
uint64_t from;
/* The length of the current content of buffer */
uint32_t len;
/* The total size of the buffer, in bytes. */
size_t size;
/* The total size of the buffer, in bytes. */
size_t size;
char *buffer;
char *buffer;
};
struct prefetch *prefetch_create(size_t size_bytes);
void prefetch_destroy(struct prefetch *prefetch);
size_t prefetch_size(struct prefetch *);
void prefetch_set_is_empty(struct prefetch *prefetch);
void prefetch_set_is_full(struct prefetch *prefetch);
void prefetch_set_full(struct prefetch *prefetch, int val);
int prefetch_is_full(struct prefetch *prefetch);
int prefetch_contains(struct prefetch *prefetch, uint64_t from,
uint32_t len);
char *prefetch_offset(struct prefetch *prefetch, uint64_t from);
struct prefetch* prefetch_create( size_t size_bytes );
void prefetch_destroy( struct prefetch *prefetch );
size_t prefetch_size( struct prefetch *);
void prefetch_set_is_empty( struct prefetch *prefetch );
void prefetch_set_is_full( struct prefetch *prefetch );
void prefetch_set_full( struct prefetch *prefetch, int val );
int prefetch_is_full( struct prefetch *prefetch );
int prefetch_contains( struct prefetch *prefetch, uint64_t from, uint32_t len );
char *prefetch_offset( struct prefetch *prefetch, uint64_t from );
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -10,98 +10,88 @@
#include "self_pipe.h"
#ifdef PREFETCH
#include "prefetch.h"
#include "prefetch.h"
#endif
/** UPSTREAM_TIMEOUT
* How long (in s) to allow for upstream to respond. If it takes longer
* How long ( in ms ) to allow for upstream to respond. If it takes longer
* than this, we will cancel the current request-response to them and resubmit
*/
#define UPSTREAM_TIMEOUT 30
#define UPSTREAM_TIMEOUT 30 * 1000
struct proxier {
/** address/port to bind to */
union mysockaddr listen_on;
union mysockaddr listen_on;
/** address/port to connect to */
union mysockaddr connect_to;
union mysockaddr connect_to;
/** address to bind to when making outgoing connections */
union mysockaddr connect_from;
int bind; /* Set to true if we should use it */
union mysockaddr connect_from;
int bind; /* Set to true if we should use it */
/* The socket we listen() on and accept() against */
int listen_fd;
/* The socket we listen() on and accept() against */
int listen_fd;
/* The socket returned by accept() that we receive requests from and send
* responses to
*/
int downstream_fd;
/* The socket returned by accept() that we receive requests from and send
* responses to
*/
int downstream_fd;
/* The socket returned by connect() that we send requests to and receive
* responses from
*/
int upstream_fd;
/* The socket returned by connect() that we send requests to and receive
* responses from
*/
int upstream_fd;
/* This is the size we advertise to the downstream server */
uint64_t upstream_size;
/* This is the size we advertise to the downstream server */
uint64_t upstream_size;
/* These are the transmission flags sent as part of the handshake */
uint32_t upstream_flags;
/* We transform the raw request header into here */
struct nbd_request req_hdr;
/* We transform the raw request header into here */
struct nbd_request req_hdr;
/* We transform the raw reply header into here */
struct nbd_reply rsp_hdr;
struct nbd_reply rsp_hdr;
/* Used for our non-blocking negotiation with upstream. TODO: maybe use
* for downstream as well ( we currently overload rsp ) */
struct iobuf init;
/* Used for our non-blocking negotiation with upstream. TODO: maybe use
* for downstream as well ( we currently overload rsp ) */
struct iobuf init;
/* The current NBD request from downstream */
struct iobuf req;
/* The current NBD request from downstream */
struct iobuf req;
/* The current NBD reply from upstream */
struct iobuf rsp;
/* The current NBD reply from upstream */
struct iobuf rsp;
/* It's starting to feel like we need an object for a single proxy session.
* These two track how many requests we've sent so far, and whether the
* NBD_INIT code has been sent to the client yet.
*/
uint64_t req_count;
int hello_sent;
/*
* How long (in s) to allow for upstream to respond. If it takes longer
* than this, we will cancel the current request-response to them and
* resubmit
*
* Defaults to UPSTREAM_TIMEOUT but can be overridden in the environment.
*/
int upstream_timeout;
unsigned long int upstream_timeout_ms;
/* It's starting to feel like we need an object for a single proxy session.
* These two track how many requests we've sent so far, and whether the
* NBD_INIT code has been sent to the client yet.
*/
uint64_t req_count;
int hello_sent;
/** These are only used if we pass --cache on the command line */
/* While the in-flight request has been munged by prefetch, these two are
* set to true, and the original length of the request, respectively */
int is_prefetch_req;
uint32_t prefetch_req_orig_len;
/* While the in-flight request has been munged by prefetch, these two are
* set to true, and the original length of the request, respectively */
int is_prefetch_req;
uint32_t prefetch_req_orig_len;
/* And here, we actually store the prefetched data once it's returned */
struct prefetch *prefetch;
/* And here, we actually store the prefetched data once it's returned */
struct prefetch *prefetch;
/** */
};
struct proxier *proxy_create(char *s_downstream_address,
char *s_downstream_port,
char *s_upstream_address,
char *s_upstream_port,
char *s_upstream_bind, char *s_cache_bytes);
int do_proxy(struct proxier *proxy);
void proxy_cleanup(struct proxier *proxy);
void proxy_destroy(struct proxier *proxy);
struct proxier* proxy_create(
char* s_downstream_address,
char* s_downstream_port,
char* s_upstream_address,
char* s_upstream_port,
char* s_upstream_bind,
char* s_cache_bytes);
int do_proxy( struct proxier* proxy );
void proxy_cleanup( struct proxier* proxy );
void proxy_destroy( struct proxier* proxy );
#endif

View File

@@ -6,104 +6,103 @@
#include "acl.h"
struct acl *acl_create(int len, char **lines, int default_deny)
struct acl * acl_create( int len, char ** lines, int default_deny )
{
struct acl *acl;
struct acl * acl;
acl = (struct acl *) xmalloc(sizeof(struct acl));
acl->len = parse_acl(&acl->entries, len, lines);
acl->default_deny = default_deny;
return acl;
acl = (struct acl *)xmalloc( sizeof( struct acl ) );
acl->len = parse_acl( &acl->entries, len, lines );
acl->default_deny = default_deny;
return acl;
}
static int testmasks[9] = { 0, 128, 192, 224, 240, 248, 252, 254, 255 };
static int testmasks[9] = { 0,128,192,224,240,248,252,254,255 };
/** Test whether AF_INET or AF_INET6 sockaddr is included in the given access
* control list, returning 1 if it is, and 0 if not.
*/
static int is_included_in_acl(int list_length,
struct ip_and_mask (*list)[],
union mysockaddr *test)
static int is_included_in_acl(int list_length, struct ip_and_mask (*list)[], union mysockaddr* test)
{
NULLCHECK(test);
NULLCHECK( test );
int i;
int i;
for (i = 0; i < list_length; i++) {
struct ip_and_mask *entry = &(*list)[i];
int testbits;
unsigned char *raw_address1 = NULL, *raw_address2 = NULL;
for (i=0; i < list_length; i++) {
struct ip_and_mask *entry = &(*list)[i];
int testbits;
unsigned char *raw_address1 = NULL, *raw_address2 = NULL;
debug("checking acl entry %d (%d/%d)", i, test->generic.sa_family,
entry->ip.family);
debug("checking acl entry %d (%d/%d)", i, test->generic.sa_family, entry->ip.family);
if (test->generic.sa_family != entry->ip.family) {
continue;
}
if (test->generic.sa_family == AF_INET) {
debug("it's an AF_INET");
raw_address1 = (unsigned char *) &test->v4.sin_addr;
raw_address2 = (unsigned char *) &entry->ip.v4.sin_addr;
} else if (test->generic.sa_family == AF_INET6) {
debug("it's an AF_INET6");
raw_address1 = (unsigned char *) &test->v6.sin6_addr;
raw_address2 = (unsigned char *) &entry->ip.v6.sin6_addr;
} else {
fatal("Can't check an ACL for this address type.");
}
debug("testbits=%d", entry->mask);
for (testbits = entry->mask; testbits > 0; testbits -= 8) {
debug("testbits=%d, c1=%02x, c2=%02x", testbits,
raw_address1[0], raw_address2[0]);
if (testbits >= 8) {
if (raw_address1[0] != raw_address2[0]) {
goto no_match;
if (test->generic.sa_family != entry->ip.family) {
continue;
}
} else {
if ((raw_address1[0] & testmasks[testbits % 8]) !=
(raw_address2[0] & testmasks[testbits % 8])) {
goto no_match;
}
}
raw_address1++;
raw_address2++;
if (test->generic.sa_family == AF_INET) {
debug("it's an AF_INET");
raw_address1 = (unsigned char*) &test->v4.sin_addr;
raw_address2 = (unsigned char*) &entry->ip.v4.sin_addr;
}
else if (test->generic.sa_family == AF_INET6) {
debug("it's an AF_INET6");
raw_address1 = (unsigned char*) &test->v6.sin6_addr;
raw_address2 = (unsigned char*) &entry->ip.v6.sin6_addr;
}
else {
fatal( "Can't check an ACL for this address type." );
}
debug("testbits=%d", entry->mask);
for (testbits = entry->mask; testbits > 0; testbits -= 8) {
debug("testbits=%d, c1=%02x, c2=%02x", testbits, raw_address1[0], raw_address2[0]);
if (testbits >= 8) {
if (raw_address1[0] != raw_address2[0]) { goto no_match; }
}
else {
if ((raw_address1[0] & testmasks[testbits%8]) !=
(raw_address2[0] & testmasks[testbits%8]) ) {
goto no_match;
}
}
raw_address1++;
raw_address2++;
}
return 1;
no_match: ;
debug("no match");
}
return 1;
no_match:;
debug("no match");
}
return 0;
return 0;
}
int acl_includes(struct acl *acl, union mysockaddr *addr)
int acl_includes( struct acl * acl, union mysockaddr * addr )
{
NULLCHECK(acl);
NULLCHECK( acl );
if (0 == acl->len) {
return !(acl->default_deny);
} else {
return is_included_in_acl(acl->len, acl->entries, addr);
}
if ( 0 == acl->len ) {
return !( acl->default_deny );
}
else {
return is_included_in_acl( acl->len, acl->entries, addr );
}
}
int acl_default_deny(struct acl *acl)
int acl_default_deny( struct acl * acl )
{
NULLCHECK(acl);
return acl->default_deny;
NULLCHECK( acl );
return acl->default_deny;
}
void acl_destroy(struct acl *acl)
void acl_destroy( struct acl * acl )
{
free(acl->entries);
acl->len = 0;
acl->entries = NULL;
free(acl);
free( acl->entries );
acl->len = 0;
acl->entries = NULL;
free( acl );
}

View File

@@ -4,9 +4,9 @@
#include "parse.h"
struct acl {
int len;
int default_deny;
struct ip_and_mask (*entries)[];
int len;
int default_deny;
struct ip_and_mask (*entries)[];
};
/** Allocate a new acl structure, parsing the given lines to sockaddr
@@ -17,21 +17,21 @@ struct acl {
* default_deny controls the behaviour of an empty list: if true, all
* requests will be denied. If true, all requests will be accepted.
*/
struct acl *acl_create(int len, char **lines, int default_deny);
struct acl * acl_create( int len, char **lines, int default_deny );
/** Check to see whether an address is allowed by an acl.
* See acl_create for how the default_deny setting affects this.
*/
int acl_includes(struct acl *, union mysockaddr *);
int acl_includes( struct acl *, union mysockaddr *);
/** Get the default_deny status */
int acl_default_deny(struct acl *);
int acl_default_deny( struct acl * );
/** Free the acl structure and the internal acl entries table.
*/
void acl_destroy(struct acl *);
void acl_destroy( struct acl * );
#endif

View File

@@ -12,8 +12,8 @@
* poking at the bits directly without using these
* accessors/macros
*/
typedef uint64_t bitfield_word_t;
typedef bitfield_word_t *bitfield_p;
typedef uint64_t bitfield_word_t;
typedef bitfield_word_t * bitfield_p;
#define BITFIELD_WORD_SIZE sizeof(bitfield_word_t)
#define BITS_PER_WORD (BITFIELD_WORD_SIZE * 8)
@@ -30,78 +30,65 @@ typedef bitfield_word_t *bitfield_p;
((_bytes + (BITFIELD_WORD_SIZE-1)) / BITFIELD_WORD_SIZE)
/** Return the bit value ''idx'' in array ''b'' */
static inline int bit_get(bitfield_p b, uint64_t idx)
{
return (BIT_WORD(b, idx) >> (idx & (BITS_PER_WORD - 1))) & 1;
static inline int bit_get(bitfield_p b, uint64_t idx) {
return (BIT_WORD(b, idx) >> (idx & (BITS_PER_WORD-1))) & 1;
}
/** Return 1 if the bit at ''idx'' in array ''b'' is set */
static inline int bit_is_set(bitfield_p b, uint64_t idx)
{
return bit_get(b, idx);
static inline int bit_is_set(bitfield_p b, uint64_t idx) {
return bit_get(b, idx);
}
/** Return 1 if the bit at ''idx'' in array ''b'' is clear */
static inline int bit_is_clear(bitfield_p b, uint64_t idx)
{
return !bit_get(b, idx);
static inline int bit_is_clear(bitfield_p b, uint64_t idx) {
return !bit_get(b, idx);
}
/** Tests whether the bit at ''idx'' in array ''b'' has value ''value'' */
static inline int bit_has_value(bitfield_p b, uint64_t idx, int value)
{
return bit_get(b, idx) == ! !value;
static inline int bit_has_value(bitfield_p b, uint64_t idx, int value) {
return bit_get(b, idx) == !!value;
}
/** Sets the bit ''idx'' in array ''b'' */
static inline void bit_set(bitfield_p b, uint64_t idx)
{
BIT_WORD(b, idx) |= BIT_MASK(idx);
static inline void bit_set(bitfield_p b, uint64_t idx) {
BIT_WORD(b, idx) |= BIT_MASK(idx);
}
/** Clears the bit ''idx'' in array ''b'' */
static inline void bit_clear(bitfield_p b, uint64_t idx)
{
BIT_WORD(b, idx) &= ~BIT_MASK(idx);
static inline void bit_clear(bitfield_p b, uint64_t idx) {
BIT_WORD(b, idx) &= ~BIT_MASK(idx);
}
/** Sets ''len'' bits in array ''b'' starting at offset ''from'' */
static inline void bit_set_range(bitfield_p b, uint64_t from, uint64_t len)
{
for (; (from % BITS_PER_WORD) != 0 && len > 0; len--) {
bit_set(b, from++);
}
for ( ; (from % BITS_PER_WORD) != 0 && len > 0 ; len-- ) {
bit_set( b, from++ );
}
if (len >= BITS_PER_WORD) {
memset(&BIT_WORD(b, from), 0xff, len / 8);
from += len;
len = len % BITS_PER_WORD;
from -= len;
}
if (len >= BITS_PER_WORD) {
memset(&BIT_WORD(b, from), 0xff, len / 8 );
from += len;
len = len % BITS_PER_WORD;
from -= len;
}
for (; len > 0; len--) {
bit_set(b, from++);
}
for ( ; len > 0 ; len-- ) {
bit_set( b, from++ );
}
}
/** Clears ''len'' bits in array ''b'' starting at offset ''from'' */
static inline void bit_clear_range(bitfield_p b, uint64_t from,
uint64_t len)
static inline void bit_clear_range(bitfield_p b, uint64_t from, uint64_t len)
{
for (; (from % BITS_PER_WORD) != 0 && len > 0; len--) {
bit_clear(b, from++);
}
for ( ; (from % BITS_PER_WORD) != 0 && len > 0 ; len-- ) {
bit_clear( b, from++ );
}
if (len >= BITS_PER_WORD) {
memset(&BIT_WORD(b, from), 0, len / 8);
from += len;
len = len % BITS_PER_WORD;
from -= len;
}
if (len >= BITS_PER_WORD) {
memset(&BIT_WORD(b, from), 0, len / 8 );
from += len;
len = len % BITS_PER_WORD;
from -= len;
}
for (; len > 0; len--) {
bit_clear(b, from++);
}
for ( ; len > 0 ; len-- ) {
bit_clear( b, from++ );
}
}
/** Counts the number of contiguous bits in array ''b'', starting at ''from''
@@ -109,333 +96,40 @@ static inline void bit_clear_range(bitfield_p b, uint64_t from,
* bits that are the same as the first one specified. If ''run_is_set'' is
* non-NULL, the value of that bit is placed into it.
*/
static inline uint64_t bit_run_count(bitfield_p b, uint64_t from,
uint64_t len, int *run_is_set)
{
uint64_t count = 0;
int first_value = bit_get(b, from);
bitfield_word_t word_match = first_value ? -1 : 0;
static inline uint64_t bit_run_count(bitfield_p b, uint64_t from, uint64_t len, int *run_is_set) {
uint64_t count = 0;
int first_value = bit_get(b, from);
bitfield_word_t word_match = first_value ? -1 : 0;
if (run_is_set != NULL) {
*run_is_set = first_value;
}
for (; ((from + count) % BITS_PER_WORD) != 0 && len > 0; len--) {
if (bit_has_value(b, from + count, first_value)) {
count++;
} else {
return count;
if ( run_is_set != NULL ) {
*run_is_set = first_value;
}
}
for (; len >= BITS_PER_WORD; len -= BITS_PER_WORD) {
if (BIT_WORD(b, from + count) == word_match) {
count += BITS_PER_WORD;
} else {
break;
for ( ; ((from + count) % BITS_PER_WORD) != 0 && len > 0; len--) {
if (bit_has_value(b, from + count, first_value)) {
count++;
} else {
return count;
}
}
}
for (; len > 0; len--) {
if (bit_has_value(b, from + count, first_value)) {
count++;
for ( ; len >= BITS_PER_WORD ; len -= BITS_PER_WORD ) {
if (BIT_WORD(b, from + count) == word_match) {
count += BITS_PER_WORD;
} else {
break;
}
}
}
return count;
}
for ( ; len > 0; len-- ) {
if ( bit_has_value(b, from + count, first_value) ) {
count++;
}
}
enum bitset_stream_events {
BITSET_STREAM_UNSET = 0,
BITSET_STREAM_SET = 1,
BITSET_STREAM_ON = 2,
BITSET_STREAM_OFF = 3
};
#define BITSET_STREAM_EVENTS_ENUM_SIZE 4
struct bitset_stream_entry {
enum bitset_stream_events event;
uint64_t from;
uint64_t len;
};
/** Limit the stream size to 1MB for now.
*
* If this is too small, it'll cause requests to stall as the migration lags
* behind the changes made by those requests.
*/
#define BITSET_STREAM_SIZE ( ( 1024 * 1024 ) / sizeof( struct bitset_stream_entry ) )
struct bitset_stream {
struct bitset_stream_entry entries[BITSET_STREAM_SIZE];
int in;
int out;
int size;
pthread_mutex_t mutex;
pthread_cond_t cond_not_full;
pthread_cond_t cond_not_empty;
uint64_t queued_bytes[BITSET_STREAM_EVENTS_ENUM_SIZE];
};
/** An application of a bitset - a bitset mapping represents a file of ''size''
* broken down into ''resolution''-sized chunks. The bit set is assumed to
* represent one bit per chunk. We also bundle a lock so that the set can be
* written reliably by multiple threads.
*/
struct bitset {
pthread_mutex_t lock;
uint64_t size;
int resolution;
struct bitset_stream *stream;
int stream_enabled;
bitfield_word_t bits[];
};
/** Allocate a bitset for a file of the given size, and chunks of the
* given resolution.
*/
static inline struct bitset *bitset_alloc(uint64_t size, int resolution)
{
// calculate a size to allocate that is a multiple of the size of the
// bitfield word
size_t bitfield_size =
BIT_WORDS_FOR_SIZE(((size + resolution -
1) / resolution)) * sizeof(bitfield_word_t);
struct bitset *bitset =
xmalloc(sizeof(struct bitset) + (bitfield_size / 8));
bitset->size = size;
bitset->resolution = resolution;
/* don't actually need to call pthread_mutex_destroy ' */
pthread_mutex_init(&bitset->lock, NULL);
bitset->stream = xmalloc(sizeof(struct bitset_stream));
pthread_mutex_init(&bitset->stream->mutex, NULL);
/* Technically don't need to call pthread_cond_destroy either */
pthread_cond_init(&bitset->stream->cond_not_full, NULL);
pthread_cond_init(&bitset->stream->cond_not_empty, NULL);
return bitset;
}
static inline void bitset_free(struct bitset *set)
{
/* TODO: free our mutex... */
free(set->stream);
set->stream = NULL;
free(set);
}
#define INT_FIRST_AND_LAST \
uint64_t first = from/set->resolution, \
last = ((from+len)-1)/set->resolution, \
bitlen = (last-first)+1
#define BITSET_LOCK \
FATAL_IF_NEGATIVE(pthread_mutex_lock(&set->lock), "Error locking bitset")
#define BITSET_UNLOCK \
FATAL_IF_NEGATIVE(pthread_mutex_unlock(&set->lock), "Error unlocking bitset")
static inline void bitset_stream_enqueue(struct bitset *set,
enum bitset_stream_events event,
uint64_t from, uint64_t len)
{
struct bitset_stream *stream = set->stream;
pthread_mutex_lock(&stream->mutex);
while (stream->size == BITSET_STREAM_SIZE) {
pthread_cond_wait(&stream->cond_not_full, &stream->mutex);
}
stream->entries[stream->in].event = event;
stream->entries[stream->in].from = from;
stream->entries[stream->in].len = len;
stream->queued_bytes[event] += len;
stream->size++;
stream->in++;
stream->in %= BITSET_STREAM_SIZE;
pthread_mutex_unlock(&stream->mutex);
pthread_cond_signal(&stream->cond_not_empty);
return;
}
static inline void bitset_stream_dequeue(struct bitset *set,
struct bitset_stream_entry *out)
{
struct bitset_stream *stream = set->stream;
struct bitset_stream_entry *dequeued;
pthread_mutex_lock(&stream->mutex);
while (stream->size == 0) {
pthread_cond_wait(&stream->cond_not_empty, &stream->mutex);
}
dequeued = &stream->entries[stream->out];
if (out != NULL) {
out->event = dequeued->event;
out->from = dequeued->from;
out->len = dequeued->len;
}
stream->queued_bytes[dequeued->event] -= dequeued->len;
stream->size--;
stream->out++;
stream->out %= BITSET_STREAM_SIZE;
pthread_mutex_unlock(&stream->mutex);
pthread_cond_signal(&stream->cond_not_full);
return;
}
static inline size_t bitset_stream_size(struct bitset *set)
{
size_t size;
pthread_mutex_lock(&set->stream->mutex);
size = set->stream->size;
pthread_mutex_unlock(&set->stream->mutex);
return size;
}
static inline uint64_t bitset_stream_queued_bytes(struct bitset *set,
enum bitset_stream_events
event)
{
uint64_t total;
pthread_mutex_lock(&set->stream->mutex);
total = set->stream->queued_bytes[event];
pthread_mutex_unlock(&set->stream->mutex);
return total;
}
static inline void bitset_enable_stream(struct bitset *set)
{
BITSET_LOCK;
set->stream_enabled = 1;
bitset_stream_enqueue(set, BITSET_STREAM_ON, 0, set->size);
BITSET_UNLOCK;
}
static inline void bitset_disable_stream(struct bitset *set)
{
BITSET_LOCK;
bitset_stream_enqueue(set, BITSET_STREAM_OFF, 0, set->size);
set->stream_enabled = 0;
BITSET_UNLOCK;
}
/** Set the bits in a bitset which correspond to the given bytes in the larger
* file.
*/
static inline void bitset_set_range(struct bitset *set,
uint64_t from, uint64_t len)
{
INT_FIRST_AND_LAST;
BITSET_LOCK;
bit_set_range(set->bits, first, bitlen);
if (set->stream_enabled) {
bitset_stream_enqueue(set, BITSET_STREAM_SET, from, len);
}
BITSET_UNLOCK;
}
/** Set every bit in the bitset. */
static inline void bitset_set(struct bitset *set)
{
bitset_set_range(set, 0, set->size);
}
/** Clear the bits in a bitset which correspond to the given bytes in the
* larger file.
*/
static inline void bitset_clear_range(struct bitset *set,
uint64_t from, uint64_t len)
{
INT_FIRST_AND_LAST;
BITSET_LOCK;
bit_clear_range(set->bits, first, bitlen);
if (set->stream_enabled) {
bitset_stream_enqueue(set, BITSET_STREAM_UNSET, from, len);
}
BITSET_UNLOCK;
}
/** Clear every bit in the bitset. */
static inline void bitset_clear(struct bitset *set)
{
bitset_clear_range(set, 0, set->size);
}
/** As per bitset_run_count but also tells you whether the run it found was set
* or unset, atomically.
*/
static inline uint64_t bitset_run_count_ex(struct bitset *set,
uint64_t from,
uint64_t len, int *run_is_set)
{
uint64_t run;
/* Clip our requests to the end of the bitset, avoiding uint underflow. */
if (from > set->size) {
return 0;
}
len = (len + from) > set->size ? (set->size - from) : len;
INT_FIRST_AND_LAST;
BITSET_LOCK;
run =
bit_run_count(set->bits, first, bitlen,
run_is_set) * set->resolution;
run -= (from % set->resolution);
BITSET_UNLOCK;
return run;
}
/** Counts the number of contiguous bytes that are represented as a run in
* the bit field.
*/
static inline uint64_t bitset_run_count(struct bitset *set,
uint64_t from, uint64_t len)
{
return bitset_run_count_ex(set, from, len, NULL);
}
/** Tests whether the bit field is clear for the given file offset.
*/
static inline int bitset_is_clear_at(struct bitset *set, uint64_t at)
{
return bit_is_clear(set->bits, at / set->resolution);
}
/** Tests whether the bit field is set for the given file offset.
*/
static inline int bitset_is_set_at(struct bitset *set, uint64_t at)
{
return bit_is_set(set->bits, at / set->resolution);
return count;
}
#endif

317
src/server/bitstream.h Normal file
View File

@@ -0,0 +1,317 @@
/*
* bitstream.h
*
* Created on: 13 Oct 2016
* Author: michel
*/
#ifndef SRC_SERVER_BITSTREAM_H_
#define SRC_SERVER_BITSTREAM_H_
#include "bitset.h"
enum bitset_stream_events {
BITSET_STREAM_UNSET = 0,
BITSET_STREAM_SET = 1,
BITSET_STREAM_ON = 2,
BITSET_STREAM_OFF = 3
};
#define BITSET_STREAM_EVENTS_ENUM_SIZE 4
struct bitset_stream_entry {
enum bitset_stream_events event;
uint64_t from;
uint64_t len;
};
/** Limit the stream size to 1MB for now.
*
* If this is too small, it'll cause requests to stall as the migration lags
* behind the changes made by those requests.
*/
#define BITSET_STREAM_SIZE ( ( 1024 * 1024 ) / sizeof( struct bitset_stream_entry ) )
struct bitset_stream {
struct bitset_stream_entry entries[BITSET_STREAM_SIZE];
int in;
int out;
int size;
pthread_mutex_t mutex;
pthread_cond_t cond_not_full;
pthread_cond_t cond_not_empty;
uint64_t queued_bytes[BITSET_STREAM_EVENTS_ENUM_SIZE];
};
/** An application of a bitset - a bitset mapping represents a file of ''size''
* broken down into ''resolution''-sized chunks. The bit set is assumed to
* represent one bit per chunk. We also bundle a lock so that the set can be
* written reliably by multiple threads.
*/
struct bitset {
pthread_mutex_t lock;
uint64_t size;
int resolution;
struct bitset_stream *stream;
int stream_enabled;
bitfield_word_t bits[];
};
/** Allocate a bitset for a file of the given size, and chunks of the
* given resolution.
*/
static inline struct bitset *bitset_alloc( uint64_t size, int resolution )
{
// calculate a size to allocate that is a multiple of the size of the
// bitfield word
size_t bitfield_size =
BIT_WORDS_FOR_SIZE((( size + resolution - 1 ) / resolution)) * sizeof( bitfield_word_t );
struct bitset *bitset = xmalloc(sizeof( struct bitset ) + ( bitfield_size / 8 ) );
bitset->size = size;
bitset->resolution = resolution;
/* don't actually need to call pthread_mutex_destroy '*/
pthread_mutex_init(&bitset->lock, NULL);
bitset->stream = xmalloc( sizeof( struct bitset_stream ) );
pthread_mutex_init( &bitset->stream->mutex, NULL );
/* Technically don't need to call pthread_cond_destroy either */
pthread_cond_init( &bitset->stream->cond_not_full, NULL );
pthread_cond_init( &bitset->stream->cond_not_empty, NULL );
return bitset;
}
static inline void bitset_free( struct bitset * set )
{
/* TODO: free our mutex... */
free( set->stream );
set->stream = NULL;
free( set );
}
#define INT_FIRST_AND_LAST \
uint64_t first = from/set->resolution, \
last = ((from+len)-1)/set->resolution, \
bitlen = (last-first)+1
#define BITSET_LOCK \
FATAL_IF_NEGATIVE(pthread_mutex_lock(&set->lock), "Error locking bitset")
#define BITSET_UNLOCK \
FATAL_IF_NEGATIVE(pthread_mutex_unlock(&set->lock), "Error unlocking bitset")
static inline void bitset_stream_enqueue(
struct bitset * set,
enum bitset_stream_events event,
uint64_t from,
uint64_t len
)
{
struct bitset_stream * stream = set->stream;
pthread_mutex_lock( &stream->mutex );
while ( stream->size == BITSET_STREAM_SIZE ) {
pthread_cond_wait( &stream->cond_not_full, &stream->mutex );
}
stream->entries[stream->in].event = event;
stream->entries[stream->in].from = from;
stream->entries[stream->in].len = len;
stream->queued_bytes[event] += len;
stream->size++;
stream->in++;
stream->in %= BITSET_STREAM_SIZE;
pthread_mutex_unlock( & stream->mutex );
pthread_cond_signal( &stream->cond_not_empty );
return;
}
static inline void bitset_stream_dequeue(
struct bitset * set,
struct bitset_stream_entry * out
)
{
struct bitset_stream * stream = set->stream;
struct bitset_stream_entry * dequeued;
pthread_mutex_lock( &stream->mutex );
while ( stream->size == 0 ) {
pthread_cond_wait( &stream->cond_not_empty, &stream->mutex );
}
dequeued = &stream->entries[stream->out];
if ( out != NULL ) {
out->event = dequeued->event;
out->from = dequeued->from;
out->len = dequeued->len;
}
stream->queued_bytes[dequeued->event] -= dequeued->len;
stream->size--;
stream->out++;
stream->out %= BITSET_STREAM_SIZE;
pthread_mutex_unlock( &stream->mutex );
pthread_cond_signal( &stream->cond_not_full );
return;
}
static inline size_t bitset_stream_size( struct bitset * set )
{
size_t size;
pthread_mutex_lock( &set->stream->mutex );
size = set->stream->size;
pthread_mutex_unlock( &set->stream->mutex );
return size;
}
static inline uint64_t bitset_stream_queued_bytes(
struct bitset * set,
enum bitset_stream_events event
)
{
uint64_t total;
pthread_mutex_lock( &set->stream->mutex );
total = set->stream->queued_bytes[event];
pthread_mutex_unlock( &set->stream->mutex );
return total;
}
static inline void bitset_enable_stream( struct bitset * set )
{
BITSET_LOCK;
set->stream_enabled = 1;
bitset_stream_enqueue( set, BITSET_STREAM_ON, 0, set->size );
BITSET_UNLOCK;
}
static inline void bitset_disable_stream( struct bitset * set )
{
BITSET_LOCK;
bitset_stream_enqueue( set, BITSET_STREAM_OFF, 0, set->size );
set->stream_enabled = 0;
BITSET_UNLOCK;
}
/** Set the bits in a bitset which correspond to the given bytes in the larger
* file.
*/
static inline void bitset_set_range(
struct bitset * set,
uint64_t from,
uint64_t len)
{
INT_FIRST_AND_LAST;
BITSET_LOCK;
bit_set_range(set->bits, first, bitlen);
if ( set->stream_enabled ) {
bitset_stream_enqueue( set, BITSET_STREAM_SET, from, len );
}
BITSET_UNLOCK;
}
/** Set every bit in the bitset. */
static inline void bitset_set( struct bitset * set )
{
bitset_set_range(set, 0, set->size);
}
/** Clear the bits in a bitset which correspond to the given bytes in the
* larger file.
*/
static inline void bitset_clear_range(
struct bitset * set,
uint64_t from,
uint64_t len)
{
INT_FIRST_AND_LAST;
BITSET_LOCK;
bit_clear_range(set->bits, first, bitlen);
if ( set->stream_enabled ) {
bitset_stream_enqueue( set, BITSET_STREAM_UNSET, from, len );
}
BITSET_UNLOCK;
}
/** Clear every bit in the bitset. */
static inline void bitset_clear( struct bitset * set )
{
bitset_clear_range(set, 0, set->size);
}
/** As per bitset_run_count but also tells you whether the run it found was set
* or unset, atomically.
*/
static inline uint64_t bitset_run_count_ex(
struct bitset * set,
uint64_t from,
uint64_t len,
int* run_is_set
)
{
uint64_t run;
/* Clip our requests to the end of the bitset, avoiding uint underflow. */
if ( from > set->size ) {
return 0;
}
len = ( len + from ) > set->size ? ( set->size - from ) : len;
INT_FIRST_AND_LAST;
BITSET_LOCK;
run = bit_run_count(set->bits, first, bitlen, run_is_set) * set->resolution;
run -= (from % set->resolution);
BITSET_UNLOCK;
return run;
}
/** Counts the number of contiguous bytes that are represented as a run in
* the bit field.
*/
static inline uint64_t bitset_run_count(
struct bitset * set,
uint64_t from,
uint64_t len)
{
return bitset_run_count_ex( set, from, len, NULL );
}
/** Tests whether the bit field is clear for the given file offset.
*/
static inline int bitset_is_clear_at( struct bitset * set, uint64_t at )
{
return bit_is_clear(set->bits, at/set->resolution);
}
/** Tests whether the bit field is set for the given file offset.
*/
static inline int bitset_is_set_at( struct bitset * set, uint64_t at )
{
return bit_is_set(set->bits, at/set->resolution);
}
#endif /* SRC_SERVER_BITSTREAM_H_ */

File diff suppressed because it is too large Load Diff

View File

@@ -3,7 +3,6 @@
#include <signal.h>
#include <time.h>
#include <inttypes.h>
/** CLIENT_HANDLER_TIMEOUT
* This is the length of time (in seconds) any request can be outstanding for.
@@ -19,40 +18,39 @@
struct client {
/* When we call pthread_join, if the thread is already dead
* we can get an ESRCH. Since we have no other way to tell
* if that ESRCH is from a dead thread or a thread that never
* existed, we use a `stopped` flag to indicate a thread which
* did exist, but went away. Only check this after a
* pthread_join call.
*/
int stopped;
int socket;
/* When we call pthread_join, if the thread is already dead
* we can get an ESRCH. Since we have no other way to tell
* if that ESRCH is from a dead thread or a thread that never
* existed, we use a `stopped` flag to indicate a thread which
* did exist, but went away. Only check this after a
* pthread_join call.
*/
int stopped;
int socket;
int fileno;
char *mapped;
int fileno;
char* mapped;
uint64_t mapped_size;
struct self_pipe * stop_signal;
struct self_pipe *stop_signal;
struct server* serve; /* FIXME: remove above duplication */
struct server *serve; /* FIXME: remove above duplication */
/* Have we seen a REQUEST_DISCONNECT message? */
int disconnect;
/* Have we seen a REQUEST_DISCONNECT message? */
int disconnect;
/* kill the whole server if a request has been outstanding too long,
* assuming use_killswitch is set in serve
*/
timer_t killswitch;
/* kill the whole server if a request has been outstanding too long,
* assuming use_killswitch is set in serve
*/
timer_t killswitch;
};
void client_killswitch_hit(int signal, siginfo_t * info, void *ptr);
void client_killswitch_hit(int signal, siginfo_t *info, void *ptr);
void *client_serve(void *client_uncast);
struct client *client_create(struct server *serve, int socket);
void client_destroy(struct client *client);
void client_signal_stop(struct client *client);
void* client_serve(void* client_uncast);
struct client * client_create( struct server * serve, int socket );
void client_destroy( struct client * client );
void client_signal_stop( struct client * client );
#endif

View File

@@ -44,578 +44,584 @@
#include <unistd.h>
struct control *control_create(struct flexnbd *flexnbd, const char *csn)
struct control * control_create(
struct flexnbd * flexnbd,
const char * csn)
{
struct control *control = xmalloc(sizeof(struct control));
struct control * control = xmalloc( sizeof( struct control ) );
NULLCHECK(csn);
NULLCHECK( csn );
control->flexnbd = flexnbd;
control->socket_name = csn;
control->open_signal = self_pipe_create();
control->close_signal = self_pipe_create();
control->mirror_state_mbox = mbox_create();
control->flexnbd = flexnbd;
control->socket_name = csn;
control->open_signal = self_pipe_create();
control->close_signal = self_pipe_create();
control->mirror_state_mbox = mbox_create();
return control;
return control;
}
void control_signal_close(struct control *control)
void control_signal_close( struct control * control)
{
NULLCHECK(control);
self_pipe_signal(control->close_signal);
NULLCHECK( control );
self_pipe_signal( control->close_signal );
}
void control_destroy(struct control *control)
void control_destroy( struct control * control )
{
NULLCHECK(control);
NULLCHECK( control );
mbox_destroy(control->mirror_state_mbox);
self_pipe_destroy(control->close_signal);
self_pipe_destroy(control->open_signal);
free(control);
mbox_destroy( control->mirror_state_mbox );
self_pipe_destroy( control->close_signal );
self_pipe_destroy( control->open_signal );
free( control );
}
void control_wait_for_close(struct control *control)
struct control_client * control_client_create(
struct flexnbd * flexnbd,
int client_fd ,
struct mbox_t * state_mbox )
{
NULLCHECK(control);
while (!fd_is_closed(control->control_fd)) {
usleep(10000);
}
}
NULLCHECK( flexnbd );
struct control_client *control_client_create(struct flexnbd *flexnbd,
int client_fd,
struct mbox *state_mbox)
{
NULLCHECK(flexnbd);
struct control_client * control_client =
xmalloc( sizeof( struct control_client ) );
struct control_client *control_client =
xmalloc(sizeof(struct control_client));
control_client->socket = client_fd;
control_client->flexnbd = flexnbd;
control_client->mirror_state_mbox = state_mbox;
return control_client;
control_client->socket = client_fd;
control_client->flexnbd = flexnbd;
control_client->mirror_state_mbox = state_mbox;
return control_client;
}
void control_client_destroy(struct control_client *client)
void control_client_destroy( struct control_client * client )
{
NULLCHECK(client);
free(client);
NULLCHECK( client );
free( client );
}
void control_respond(struct control_client *client);
void control_respond(struct control_client * client);
void control_handle_client(struct control *control, int client_fd)
void control_handle_client( struct control * control, int client_fd )
{
NULLCHECK(control);
NULLCHECK(control->flexnbd);
struct control_client *control_client =
control_client_create(control->flexnbd,
client_fd,
control->mirror_state_mbox);
NULLCHECK( control );
NULLCHECK( control->flexnbd );
struct control_client * control_client =
control_client_create(
control->flexnbd,
client_fd ,
control->mirror_state_mbox);
/* We intentionally don't spawn a thread for the client here.
* This is to avoid having more than one thread potentially
* waiting on the migration commit status.
*/
control_respond(control_client);
/* We intentionally don't spawn a thread for the client here.
* This is to avoid having more than one thread potentially
* waiting on the migration commit status.
*/
control_respond( control_client );
}
void control_accept_client(struct control *control)
void control_accept_client( struct control * control )
{
int client_fd;
union mysockaddr client_address;
socklen_t addrlen = sizeof(union mysockaddr);
int client_fd;
union mysockaddr client_address;
socklen_t addrlen = sizeof( union mysockaddr );
client_fd =
accept(control->control_fd, &client_address.generic, &addrlen);
FATAL_IF(-1 == client_fd, "control accept failed");
client_fd = accept( control->control_fd, &client_address.generic, &addrlen );
FATAL_IF( -1 == client_fd, "control accept failed" );
control_handle_client(control, client_fd);
control_handle_client( control, client_fd );
}
int control_accept(struct control *control)
int control_accept( struct control * control )
{
NULLCHECK(control);
NULLCHECK( control );
fd_set fds;
fd_set fds;
FD_ZERO(&fds);
FD_SET(control->control_fd, &fds);
self_pipe_fd_set(control->close_signal, &fds);
debug("Control thread selecting");
FATAL_UNLESS(0 < select(FD_SETSIZE, &fds, NULL, NULL, NULL),
"Control select failed.");
FD_ZERO( &fds );
FD_SET( control->control_fd, &fds );
self_pipe_fd_set( control->close_signal, &fds );
debug("Control thread selecting");
FATAL_UNLESS( 0 < select( FD_SETSIZE, &fds, NULL, NULL, NULL ),
"Control select failed." );
if (self_pipe_fd_isset(control->close_signal, &fds)) {
return 0;
}
if ( self_pipe_fd_isset( control->close_signal, &fds ) ){
return 0;
}
if (FD_ISSET(control->control_fd, &fds)) {
control_accept_client(control);
}
return 1;
if ( FD_ISSET( control->control_fd, &fds ) ) {
control_accept_client( control );
}
return 1;
}
void control_accept_loop(struct control *control)
void control_accept_loop( struct control * control )
{
while (control_accept(control));
while( control_accept( control ) );
}
int open_control_socket(const char *socket_name)
int open_control_socket( const char * socket_name )
{
struct sockaddr_un bind_address;
int control_fd;
struct sockaddr_un bind_address;
int control_fd;
if (!socket_name) {
fatal("Tried to open a control socket without a socket name");
}
if (!socket_name) {
fatal( "Tried to open a control socket without a socket name" );
}
control_fd = socket(AF_UNIX, SOCK_STREAM, 0);
FATAL_IF_NEGATIVE(control_fd, "Couldn't create control socket");
control_fd = socket(AF_UNIX, SOCK_STREAM, 0);
FATAL_IF_NEGATIVE(control_fd ,
"Couldn't create control socket");
memset(&bind_address, 0, sizeof(struct sockaddr_un));
bind_address.sun_family = AF_UNIX;
strncpy(bind_address.sun_path, socket_name,
sizeof(bind_address.sun_path) - 1);
memset(&bind_address, 0, sizeof(struct sockaddr_un));
bind_address.sun_family = AF_UNIX;
strncpy(bind_address.sun_path, socket_name, sizeof(bind_address.sun_path)-1);
//unlink(socket_name); /* ignore failure */
//unlink(socket_name); /* ignore failure */
FATAL_IF_NEGATIVE(bind
(control_fd, &bind_address, sizeof(bind_address)),
"Couldn't bind control socket to %s: %s",
socket_name, strerror(errno)
FATAL_IF_NEGATIVE(
bind(control_fd , &bind_address, sizeof(bind_address)),
"Couldn't bind control socket to %s: %s",
socket_name, strerror( errno )
);
FATAL_IF_NEGATIVE(listen(control_fd, 5),
"Couldn't listen on control socket");
return control_fd;
FATAL_IF_NEGATIVE(
listen(control_fd , 5),
"Couldn't listen on control socket"
);
return control_fd;
}
void control_listen(struct control *control)
void control_listen(struct control* control)
{
NULLCHECK(control);
control->control_fd = open_control_socket(control->socket_name);
NULLCHECK( control );
control->control_fd = open_control_socket( control->socket_name );
}
void control_wait_for_open_signal(struct control *control)
void control_wait_for_open_signal( struct control * control )
{
fd_set fds;
FD_ZERO(&fds);
self_pipe_fd_set(control->open_signal, &fds);
FATAL_IF_NEGATIVE(select(FD_SETSIZE, &fds, NULL, NULL, NULL),
"select() failed");
fd_set fds;
FD_ZERO( &fds );
self_pipe_fd_set( control->open_signal, &fds );
FATAL_IF_NEGATIVE( select( FD_SETSIZE, &fds, NULL, NULL, NULL ),
"select() failed" );
self_pipe_signal_clear(control->open_signal);
self_pipe_signal_clear( control->open_signal );
}
void control_serve(struct control *control)
void control_serve( struct control * control )
{
NULLCHECK(control);
NULLCHECK( control );
control_wait_for_open_signal(control);
control_listen(control);
while (control_accept(control));
control_wait_for_open_signal( control );
control_listen( control );
while( control_accept( control ) );
}
void control_cleanup(struct control *control,
int fatal __attribute__ ((unused)))
void control_cleanup(
struct control * control,
int fatal __attribute__((unused)) )
{
NULLCHECK(control);
unlink(control->socket_name);
close(control->control_fd);
NULLCHECK( control );
unlink( control->socket_name );
close( control->control_fd );
}
void *control_runner(void *control_uncast)
void * control_runner( void * control_uncast )
{
debug("Control thread");
NULLCHECK(control_uncast);
struct control *control = (struct control *) control_uncast;
debug("Control thread");
NULLCHECK( control_uncast );
struct control * control = (struct control *)control_uncast;
error_set_handler((cleanup_handler *) control_cleanup, control);
error_set_handler( (cleanup_handler*)control_cleanup, control );
control_serve(control);
control_serve( control );
control_cleanup(control, 0);
pthread_exit(NULL);
control_cleanup( control, 0 );
pthread_exit( NULL );
}
#define write_socket(msg) write(client_fd, (msg "\n"), strlen((msg))+1)
void control_write_mirror_response(enum mirror_state mirror_state,
int client_fd)
void control_write_mirror_response( mirror_state_t mirror_state, int client_fd )
{
switch (mirror_state) {
case MS_INIT:
case MS_UNKNOWN:
write_socket("1: Mirror failed to initialise");
fatal("Impossible mirror state: %d", mirror_state);
case MS_FAIL_CONNECT:
write_socket("1: Mirror failed to connect");
break;
case MS_FAIL_REJECTED:
write_socket("1: Mirror was rejected");
break;
case MS_FAIL_NO_HELLO:
write_socket("1: Remote server failed to respond");
break;
case MS_FAIL_SIZE_MISMATCH:
write_socket("1: Remote size does not match local size");
break;
case MS_ABANDONED:
write_socket("1: Mirroring abandoned");
break;
case MS_GO:
case MS_DONE: /* Yes, I know we know better, but it's simpler this way */
write_socket("0: Mirror started");
break;
default:
fatal("Unhandled mirror state: %d", mirror_state);
}
switch (mirror_state) {
case MS_INIT:
case MS_UNKNOWN:
write_socket( "1: Mirror failed to initialise" );
fatal( "Impossible mirror state: %d", mirror_state );
case MS_FAIL_CONNECT:
write_socket( "1: Mirror failed to connect");
break;
case MS_FAIL_REJECTED:
write_socket( "1: Mirror was rejected" );
break;
case MS_FAIL_NO_HELLO:
write_socket( "1: Remote server failed to respond");
break;
case MS_FAIL_SIZE_MISMATCH:
write_socket( "1: Remote size does not match local size" );
break;
case MS_ABANDONED:
write_socket( "1: Mirroring abandoned" );
break;
case MS_GO:
case MS_DONE: /* Yes, I know we know better, but it's simpler this way */
write_socket( "0: Mirror started" );
break;
default:
fatal( "Unhandled mirror state: %d", mirror_state );
}
}
#undef write_socket
/* Call this in the thread where you want to receive the mirror state */
enum mirror_state control_client_mirror_wait(struct control_client *client)
mirror_state_t control_client_mirror_wait(
struct control_client* client)
{
NULLCHECK(client);
NULLCHECK(client->mirror_state_mbox);
NULLCHECK( client );
NULLCHECK( client->mirror_state_mbox );
struct mbox *mbox = client->mirror_state_mbox;
enum mirror_state mirror_state;
enum mirror_state *contents;
struct mbox_t * mbox = client->mirror_state_mbox;
mirror_state_t mirror_state;
contents = (enum mirror_state *) mbox_receive(mbox);
NULLCHECK(contents);
mirror_state = mbox_receive( mbox ).i;
mirror_state = *contents;
free(contents);
return mirror_state;
return mirror_state;
}
#define write_socket(msg) write(client->socket, (msg "\n"), strlen((msg))+1)
/** Command parser to start mirror process from socket input */
int control_mirror(struct control_client *client, int linesc, char **lines)
int control_mirror(struct control_client* client, int linesc, char** lines)
{
NULLCHECK(client);
NULLCHECK( client );
struct flexnbd *flexnbd = client->flexnbd;
union mysockaddr *connect_to = xmalloc(sizeof(union mysockaddr));
union mysockaddr *connect_from = NULL;
uint64_t max_Bps = UINT64_MAX;
int action_at_finish;
int raw_port;
struct flexnbd * flexnbd = client->flexnbd;
union mysockaddr *connect_to = xmalloc( sizeof( union mysockaddr ) );
union mysockaddr *connect_from = NULL;
uint64_t max_Bps = UINT64_MAX;
int action_at_finish;
int raw_port;
if (linesc < 2) {
write_socket("1: mirror takes at least two parameters");
return -1;
}
if (parse_ip_to_sockaddr(&connect_to->generic, lines[0]) == 0) {
write_socket("1: bad IP address");
return -1;
}
raw_port = atoi(lines[1]);
if (raw_port < 0 || raw_port > 65535) {
write_socket("1: bad IP port number");
return -1;
}
connect_to->v4.sin_port = htobe16(raw_port);
action_at_finish = ACTION_EXIT;
if (linesc > 2) {
if (strcmp("exit", lines[2]) == 0) {
action_at_finish = ACTION_EXIT;
} else if (strcmp("unlink", lines[2]) == 0) {
action_at_finish = ACTION_UNLINK;
} else if (strcmp("nothing", lines[2]) == 0) {
action_at_finish = ACTION_NOTHING;
} else {
write_socket("1: action must be 'exit' or 'nothing'");
return -1;
}
}
if (linesc > 3) {
connect_from = xmalloc(sizeof(union mysockaddr));
if (parse_ip_to_sockaddr(&connect_from->generic, lines[3]) == 0) {
write_socket("1: bad bind address");
return -1;
}
}
if (linesc > 4) {
errno = 0;
max_Bps = strtoull(lines[4], NULL, 10);
if (errno == ERANGE) {
write_socket("1: max_bps out of range");
return -1;
} else if (errno != 0) {
write_socket("1: max_bps couldn't be parsed");
return -1;
}
}
if (linesc > 5) {
write_socket("1: unrecognised parameters to mirror");
return -1;
}
struct server *serve = flexnbd_server(flexnbd);
server_lock_start_mirror(serve);
{
if (server_mirror_can_start(serve)) {
serve->mirror_super = mirror_super_create(serve->filename,
connect_to,
connect_from,
max_Bps,
action_at_finish,
client->
mirror_state_mbox);
serve->mirror = serve->mirror_super->mirror;
server_prevent_mirror_start(serve);
} else {
if (serve->mirror_super) {
warn("Tried to start a second mirror run");
write_socket("1: mirror already running");
} else {
warn("Cannot start mirroring, shutting down");
write_socket("1: shutting down");
}
if (linesc < 2) {
write_socket("1: mirror takes at least two parameters");
return -1;
}
}
server_unlock_start_mirror(serve);
if (parse_ip_to_sockaddr(&connect_to->generic, lines[0]) == 0) {
write_socket("1: bad IP address");
return -1;
}
/* Do this outside the lock to minimise the length of time the
* sighandler can block the serve thread
*/
if (serve->mirror_super) {
FATAL_IF(0 != pthread_create(&serve->mirror_super->thread,
NULL,
mirror_super_runner,
serve),
"Failed to create mirror thread");
raw_port = atoi(lines[1]);
if (raw_port < 0 || raw_port > 65535) {
write_socket("1: bad IP port number");
return -1;
}
connect_to->v4.sin_port = htobe16(raw_port);
debug("Control thread mirror super waiting");
enum mirror_state state = control_client_mirror_wait(client);
debug("Control thread writing response");
control_write_mirror_response(state, client->socket);
}
action_at_finish = ACTION_EXIT;
if (linesc > 2) {
if (strcmp("exit", lines[2]) == 0) {
action_at_finish = ACTION_EXIT;
}
else if (strcmp( "unlink", lines[2]) == 0 ) {
action_at_finish = ACTION_UNLINK;
}
else if (strcmp("nothing", lines[2]) == 0) {
action_at_finish = ACTION_NOTHING;
}
else {
write_socket("1: action must be 'exit' or 'nothing'");
return -1;
}
}
debug("Control thread going away.");
if (linesc > 3) {
connect_from = xmalloc( sizeof( union mysockaddr ) );
if (parse_ip_to_sockaddr(&connect_from->generic, lines[3]) == 0) {
write_socket("1: bad bind address");
return -1;
}
}
return 0;
if (linesc > 4) {
errno = 0;
max_Bps = strtoull( lines[4], NULL, 10 );
if ( errno == ERANGE ) {
write_socket( "1: max_bps out of range" );
return -1;
} else if ( errno != 0 ) {
write_socket( "1: max_bps couldn't be parsed" );
return -1;
}
}
if (linesc > 5) {
write_socket("1: unrecognised parameters to mirror");
return -1;
}
struct server * serve = flexnbd_server(flexnbd);
server_lock_start_mirror( serve );
{
if ( server_mirror_can_start( serve ) ) {
serve->mirror_super = mirror_super_create(
serve->filename,
connect_to,
connect_from,
max_Bps ,
action_at_finish,
client->mirror_state_mbox );
serve->mirror = serve->mirror_super->mirror;
server_prevent_mirror_start( serve );
} else {
if ( serve->mirror_super ) {
warn( "Tried to start a second mirror run" );
write_socket( "1: mirror already running" );
} else {
warn( "Cannot start mirroring, shutting down" );
write_socket( "1: shutting down" );
}
}
}
server_unlock_start_mirror( serve );
/* Do this outside the lock to minimise the length of time the
* sighandler can block the serve thread
*/
if ( serve->mirror_super ) {
FATAL_IF( 0 != pthread_create(
&serve->mirror_super->thread,
NULL,
mirror_super_runner,
serve
),
"Failed to create mirror thread"
);
debug("Control thread mirror super waiting");
mirror_state_t state =
control_client_mirror_wait( client );
debug("Control thread writing response");
control_write_mirror_response( state, client->socket );
}
debug( "Control thread going away." );
return 0;
}
int control_mirror_max_bps(struct control_client *client, int linesc,
char **lines)
int control_mirror_max_bps( struct control_client* client, int linesc, char** lines )
{
NULLCHECK(client);
NULLCHECK(client->flexnbd);
NULLCHECK( client );
NULLCHECK( client->flexnbd );
struct server *serve = flexnbd_server(client->flexnbd);
uint64_t max_Bps;
struct server* serve = flexnbd_server( client->flexnbd );
uint64_t max_Bps;
if (!serve->mirror_super) {
write_socket("1: Not currently mirroring");
return -1;
}
if ( !serve->mirror_super ) {
write_socket( "1: Not currently mirroring" );
return -1;
}
if (linesc != 1) {
write_socket("1: Bad format");
return -1;
}
if ( linesc != 1 ) {
write_socket( "1: Bad format" );
return -1;
}
errno = 0;
max_Bps = strtoull(lines[0], NULL, 10);
if (errno == ERANGE) {
write_socket("1: max_bps out of range");
return -1;
} else if (errno != 0) {
write_socket("1: max_bps couldn't be parsed");
return -1;
}
errno = 0;
max_Bps = strtoull( lines[0], NULL, 10 );
if ( errno == ERANGE ) {
write_socket( "1: max_bps out of range" );
return -1;
} else if ( errno != 0 ) {
write_socket( "1: max_bps couldn't be parsed" );
return -1;
}
serve->mirror->max_bytes_per_second = max_Bps;
write_socket("0: updated");
serve->mirror->max_bytes_per_second = max_Bps;
write_socket( "0: updated" );
return 0;
return 0;
}
#undef write_socket
/** Command parser to alter access control list from socket input */
int control_acl(struct control_client *client, int linesc, char **lines)
int control_acl(struct control_client* client, int linesc, char** lines)
{
NULLCHECK(client);
NULLCHECK(client->flexnbd);
struct flexnbd *flexnbd = client->flexnbd;
NULLCHECK( client );
NULLCHECK( client->flexnbd );
struct flexnbd * flexnbd = client->flexnbd;
int default_deny = flexnbd_default_deny(flexnbd);
struct acl *new_acl = acl_create(linesc, lines, default_deny);
int default_deny = flexnbd_default_deny( flexnbd );
struct acl * new_acl = acl_create( linesc, lines, default_deny );
if (new_acl->len != linesc) {
warn("Bad ACL spec: %s", lines[new_acl->len]);
write(client->socket, "1: bad spec: ", 13);
write(client->socket, lines[new_acl->len],
strlen(lines[new_acl->len]));
write(client->socket, "\n", 1);
acl_destroy(new_acl);
} else {
flexnbd_replace_acl(flexnbd, new_acl);
info("ACL set");
write(client->socket, "0: updated\n", 11);
}
if (new_acl->len != linesc) {
warn("Bad ACL spec: %s", lines[new_acl->len] );
write(client->socket, "1: bad spec: ", 13);
write(client->socket, lines[new_acl->len],
strlen(lines[new_acl->len]));
write(client->socket, "\n", 1);
acl_destroy( new_acl );
}
else {
flexnbd_replace_acl( flexnbd, new_acl );
info("ACL set");
write( client->socket, "0: updated\n", 11);
}
return 0;
return 0;
}
int control_break(struct control_client *client,
int linesc __attribute__ ((unused)),
char **lines __attribute__ ((unused))
)
int control_break(
struct control_client* client,
int linesc __attribute__ ((unused)),
char** lines __attribute__((unused))
)
{
NULLCHECK(client);
NULLCHECK(client->flexnbd);
NULLCHECK( client );
NULLCHECK( client->flexnbd );
int result = 0;
struct flexnbd *flexnbd = client->flexnbd;
int result = 0;
struct flexnbd* flexnbd = client->flexnbd;
struct server *serve = flexnbd_server(flexnbd);
struct server * serve = flexnbd_server( flexnbd );
server_lock_start_mirror(serve);
{
if (server_is_mirroring(serve)) {
server_lock_start_mirror( serve );
{
if ( server_is_mirroring( serve ) ) {
info("Signaling to abandon mirror");
server_abandon_mirror(serve);
debug("Abandon signaled");
info( "Signaling to abandon mirror" );
server_abandon_mirror( serve );
debug( "Abandon signaled" );
if (server_is_closed(serve)) {
info("Mirror completed while canceling");
write(client->socket, "1: mirror completed\n", 20);
} else {
info("Mirror successfully stopped.");
write(client->socket, "0: mirror stopped\n", 18);
result = 1;
}
if ( server_is_closed( serve ) ) {
info( "Mirror completed while canceling" );
write( client->socket,
"1: mirror completed\n", 20 );
}
else {
info( "Mirror successfully stopped." );
write( client->socket,
"0: mirror stopped\n", 18 );
result = 1;
}
} else {
warn("Not mirroring.");
write(client->socket, "1: not mirroring\n", 17);
} else {
warn( "Not mirroring." );
write( client->socket, "1: not mirroring\n", 17 );
}
}
}
server_unlock_start_mirror(serve);
server_unlock_start_mirror( serve );
return result;
return result;
}
/** FIXME: add some useful statistics */
int control_status(struct control_client *client,
int linesc __attribute__ ((unused)),
char **lines __attribute__ ((unused))
)
int control_status(
struct control_client* client,
int linesc __attribute__ ((unused)),
char** lines __attribute__((unused))
)
{
NULLCHECK(client);
NULLCHECK(client->flexnbd);
struct status *status = flexnbd_status_create(client->flexnbd);
NULLCHECK( client );
NULLCHECK( client->flexnbd );
struct status * status = flexnbd_status_create( client->flexnbd );
write(client->socket, "0: ", 3);
status_write(status, client->socket);
status_destroy(status);
write( client->socket, "0: ", 3 );
status_write( status, client->socket );
status_destroy( status );
return 0;
return 0;
}
void control_client_cleanup(struct control_client *client,
int fatal __attribute__ ((unused)))
void control_client_cleanup(struct control_client* client,
int fatal __attribute__ ((unused)) )
{
if (client->socket) {
close(client->socket);
}
if (client->socket) { close(client->socket); }
/* This is wrongness */
if (server_acl_locked(client->flexnbd->serve)) {
server_unlock_acl(client->flexnbd->serve);
}
/* This is wrongness */
if ( server_acl_locked( client->flexnbd->serve ) ) { server_unlock_acl( client->flexnbd->serve ); }
control_client_destroy(client);
control_client_destroy( client );
}
/** Master command parser for control socket connections, delegates quickly */
void control_respond(struct control_client *client)
void control_respond(struct control_client * client)
{
char **lines = NULL;
char **lines = NULL;
error_set_handler((cleanup_handler *) control_client_cleanup, client);
error_set_handler((cleanup_handler*) control_client_cleanup, client);
int i, linesc;
linesc = read_lines_until_blankline(client->socket, 256, &lines);
int i, linesc;
linesc = read_lines_until_blankline(client->socket, 256, &lines);
if (linesc < 1) {
write(client->socket, "9: missing command\n", 19);
/* ignore failure */
} else if (strcmp(lines[0], "acl") == 0) {
info("acl command received");
if (control_acl(client, linesc - 1, lines + 1) < 0) {
debug("acl command failed");
if (linesc < 1)
{
write(client->socket, "9: missing command\n", 19);
/* ignore failure */
}
} else if (strcmp(lines[0], "mirror") == 0) {
info("mirror command received");
if (control_mirror(client, linesc - 1, lines + 1) < 0) {
debug("mirror command failed");
else if (strcmp(lines[0], "acl") == 0) {
info("acl command received" );
if (control_acl(client, linesc-1, lines+1) < 0) {
debug("acl command failed");
}
}
} else if (strcmp(lines[0], "break") == 0) {
info("break command received");
if (control_break(client, linesc - 1, lines + 1) < 0) {
debug("break command failed");
else if (strcmp(lines[0], "mirror") == 0) {
info("mirror command received" );
if (control_mirror(client, linesc-1, lines+1) < 0) {
debug("mirror command failed");
}
}
} else if (strcmp(lines[0], "status") == 0) {
info("status command received");
if (control_status(client, linesc - 1, lines + 1) < 0) {
debug("status command failed");
else if (strcmp(lines[0], "break") == 0) {
info( "break command received" );
if ( control_break( client, linesc-1, lines+1) < 0) {
debug( "break command failed" );
}
}
} else if (strcmp(lines[0], "mirror_max_bps") == 0) {
info("mirror_max_bps command received");
if (control_mirror_max_bps(client, linesc - 1, lines + 1) < 0) {
debug("mirror_max_bps command failed");
else if (strcmp(lines[0], "status") == 0) {
info("status command received" );
if (control_status(client, linesc-1, lines+1) < 0) {
debug("status command failed");
}
} else if ( strcmp( lines[0], "mirror_max_bps" ) == 0 ) {
info( "mirror_max_bps command received" );
if( control_mirror_max_bps( client, linesc-1, lines+1 ) < 0 ) {
debug( "mirror_max_bps command failed" );
}
}
else {
write(client->socket, "10: unknown command\n", 23);
}
} else {
write(client->socket, "10: unknown command\n", 23);
}
for (i = 0; i < linesc; i++) {
free(lines[i]);
}
free(lines);
for (i=0; i<linesc; i++) {
free(lines[i]);
}
free(lines);
control_client_cleanup(client, 0);
debug("control command handled");
control_client_cleanup(client, 0);
debug("control command handled" );
}

View File

@@ -13,47 +13,47 @@ struct server;
#include "mbox.h"
struct control {
struct flexnbd *flexnbd;
int control_fd;
const char *socket_name;
struct flexnbd * flexnbd;
int control_fd;
const char * socket_name;
pthread_t thread;
pthread_t thread;
struct self_pipe *open_signal;
struct self_pipe *close_signal;
struct self_pipe * open_signal;
struct self_pipe * close_signal;
/* This is owned by the control object, and used by a
* mirror_super to communicate the state of a mirror attempt as
* early as feasible. It can't be owned by the mirror_super
* object because the mirror_super object can be freed at any
* time (including while the control_client is waiting on it),
* whereas the control object lasts for the lifetime of the
* process (and we can only have a mirror thread if the control
* thread has started it).
*/
struct mbox *mirror_state_mbox;
/* This is owned by the control object, and used by a
* mirror_super to communicate the state of a mirror attempt as
* early as feasible. It can't be owned by the mirror_super
* object because the mirror_super object can be freed at any
* time (including while the control_client is waiting on it),
* whereas the control object lasts for the lifetime of the
* process (and we can only have a mirror thread if the control
* thread has started it).
*/
struct mbox_t * mirror_state_mbox;
};
struct control_client {
int socket;
struct flexnbd *flexnbd;
struct control_client{
int socket;
struct flexnbd * flexnbd;
/* Passed in on creation. We know it's all right to do this
* because we know there's only ever one control_client.
*/
struct mbox *mirror_state_mbox;
/* Passed in on creation. We know it's all right to do this
* because we know there's only ever one control_client.
*/
struct mbox_t * mirror_state_mbox;
};
struct control *control_create(struct flexnbd *,
const char *control_socket_name);
void control_signal_close(struct control *);
void control_wait_for_close(struct control *control);
void control_destroy(struct control *);
struct control * control_create(
struct flexnbd *,
const char * control_socket_name );
void control_signal_close( struct control * );
void control_destroy( struct control * );
void *control_runner(void *);
void * control_runner( void * );
void accept_control_connection(struct server *params, int client_fd,
union mysockaddr *client_address);
void serve_open_control_socket(struct server *params);
void accept_control_connection(struct server* params, int client_fd, union mysockaddr* client_address);
void serve_open_control_socket(struct server* params);
#endif

View File

@@ -43,206 +43,223 @@
int flexnbd_build_signal_fd(void)
{
sigset_t mask;
int sfd;
sigset_t mask;
int sfd;
sigemptyset(&mask);
sigaddset(&mask, SIGTERM);
sigaddset(&mask, SIGQUIT);
sigaddset(&mask, SIGINT);
sigemptyset( &mask );
sigaddset( &mask, SIGTERM );
sigaddset( &mask, SIGQUIT );
sigaddset( &mask, SIGINT );
FATAL_UNLESS(0 == pthread_sigmask(SIG_BLOCK, &mask, NULL),
"Signal blocking failed");
FATAL_UNLESS( 0 == pthread_sigmask( SIG_BLOCK, &mask, NULL ),
"Signal blocking failed" );
sfd = signalfd(-1, &mask, 0);
FATAL_IF(-1 == sfd, "Failed to get a signal fd");
sfd = signalfd( -1, &mask, 0 );
FATAL_IF( -1 == sfd, "Failed to get a signal fd" );
return sfd;
return sfd;
}
void flexnbd_create_shared(struct flexnbd *flexnbd,
const char *s_ctrl_sock)
void flexnbd_create_shared(
struct flexnbd * flexnbd,
const char * s_ctrl_sock)
{
NULLCHECK(flexnbd);
if (s_ctrl_sock) {
flexnbd->control = control_create(flexnbd, s_ctrl_sock);
} else {
flexnbd->control = NULL;
}
NULLCHECK( flexnbd );
if ( s_ctrl_sock ){
flexnbd->control =
control_create( flexnbd, s_ctrl_sock );
}
else {
flexnbd->control = NULL;
}
flexnbd->signal_fd = flexnbd_build_signal_fd();
flexnbd->signal_fd = flexnbd_build_signal_fd();
}
struct flexnbd *flexnbd_create_serving(char *s_ip_address,
char *s_port,
char *s_file,
char *s_ctrl_sock,
int default_deny,
int acl_entries,
char **s_acl_entries,
int max_nbd_clients,
int use_killswitch)
struct flexnbd * flexnbd_create_serving(
char* s_ip_address,
char* s_port,
char* s_file,
char* s_ctrl_sock,
int default_deny,
int acl_entries,
char** s_acl_entries,
int max_nbd_clients,
int use_killswitch)
{
struct flexnbd *flexnbd = xmalloc(sizeof(struct flexnbd));
flexnbd->serve = server_create(flexnbd,
s_ip_address,
s_port,
s_file,
default_deny,
acl_entries,
s_acl_entries,
max_nbd_clients, use_killswitch, 1);
flexnbd_create_shared(flexnbd, s_ctrl_sock);
struct flexnbd * flexnbd = xmalloc( sizeof( struct flexnbd ) );
flexnbd->serve = server_create(
flexnbd,
s_ip_address,
s_port,
s_file,
default_deny,
acl_entries,
s_acl_entries,
max_nbd_clients,
use_killswitch,
1);
flexnbd_create_shared( flexnbd, s_ctrl_sock );
// Beats installing one handler per client instance
if (use_killswitch) {
struct sigaction act = {
.sa_sigaction = client_killswitch_hit,
.sa_flags = SA_RESTART | SA_SIGINFO
};
// Beats installing one handler per client instance
if ( use_killswitch ) {
struct sigaction act = {
.sa_sigaction = client_killswitch_hit,
.sa_flags = SA_RESTART | SA_SIGINFO
};
FATAL_UNLESS(0 == sigaction(CLIENT_KILLSWITCH_SIGNAL, &act, NULL),
"Installing client killswitch signal failed");
}
FATAL_UNLESS(
0 == sigaction( CLIENT_KILLSWITCH_SIGNAL, &act, NULL ),
"Installing client killswitch signal failed"
);
}
return flexnbd;
return flexnbd;
}
struct flexnbd *flexnbd_create_listening(char *s_ip_address,
char *s_port,
char *s_file,
char *s_ctrl_sock,
int default_deny,
int acl_entries,
char **s_acl_entries)
struct flexnbd * flexnbd_create_listening(
char* s_ip_address,
char* s_port,
char* s_file,
char* s_ctrl_sock,
int default_deny,
int acl_entries,
char** s_acl_entries )
{
struct flexnbd *flexnbd = xmalloc(sizeof(struct flexnbd));
flexnbd->serve = server_create(flexnbd,
s_ip_address,
s_port,
s_file,
default_deny,
acl_entries, s_acl_entries, 1, 0, 0);
flexnbd_create_shared(flexnbd, s_ctrl_sock);
struct flexnbd * flexnbd = xmalloc( sizeof( struct flexnbd ) );
flexnbd->serve = server_create(
flexnbd,
s_ip_address,
s_port,
s_file,
default_deny,
acl_entries,
s_acl_entries,
1, 0, 0);
flexnbd_create_shared( flexnbd, s_ctrl_sock );
// listen can't use killswitch, as mirror may pause on sending things
// for a very long time.
// listen can't use killswitch, as mirror may pause on sending things
// for a very long time.
return flexnbd;
return flexnbd;
}
void flexnbd_spawn_control(struct flexnbd *flexnbd)
void flexnbd_spawn_control(struct flexnbd * flexnbd )
{
NULLCHECK(flexnbd);
NULLCHECK(flexnbd->control);
NULLCHECK( flexnbd );
NULLCHECK( flexnbd->control );
pthread_t *control_thread = &flexnbd->control->thread;
pthread_t * control_thread = &flexnbd->control->thread;
FATAL_UNLESS(0 == pthread_create(control_thread,
NULL,
control_runner,
flexnbd->control),
"Couldn't create the control thread");
FATAL_UNLESS( 0 == pthread_create(
control_thread,
NULL,
control_runner,
flexnbd->control ),
"Couldn't create the control thread" );
}
void flexnbd_stop_control(struct flexnbd *flexnbd)
void flexnbd_stop_control( struct flexnbd * flexnbd )
{
NULLCHECK(flexnbd);
NULLCHECK(flexnbd->control);
NULLCHECK( flexnbd );
NULLCHECK( flexnbd->control );
control_signal_close(flexnbd->control);
pthread_t tid = flexnbd->control->thread;
FATAL_UNLESS(0 == pthread_join(tid, NULL),
"Failed joining the control thread");
debug("Control thread %p pthread_join returned", tid);
control_signal_close( flexnbd->control );
pthread_t tid = flexnbd->control->thread;
FATAL_UNLESS( 0 == pthread_join( tid, NULL ),
"Failed joining the control thread" );
debug( "Control thread %p pthread_join returned", tid );
}
int flexnbd_signal_fd(struct flexnbd *flexnbd)
int flexnbd_signal_fd( struct flexnbd * flexnbd )
{
NULLCHECK(flexnbd);
return flexnbd->signal_fd;
NULLCHECK( flexnbd );
return flexnbd->signal_fd;
}
void flexnbd_destroy(struct flexnbd *flexnbd)
void flexnbd_destroy( struct flexnbd * flexnbd )
{
NULLCHECK(flexnbd);
if (flexnbd->control) {
control_destroy(flexnbd->control);
}
NULLCHECK( flexnbd );
if ( flexnbd->control ) {
control_destroy( flexnbd->control );
}
close(flexnbd->signal_fd);
free(flexnbd);
close( flexnbd->signal_fd );
free( flexnbd );
}
struct server *flexnbd_server(struct flexnbd *flexnbd)
struct server * flexnbd_server( struct flexnbd * flexnbd )
{
NULLCHECK(flexnbd);
return flexnbd->serve;
NULLCHECK( flexnbd );
return flexnbd->serve;
}
void flexnbd_replace_acl(struct flexnbd *flexnbd, struct acl *acl)
void flexnbd_replace_acl( struct flexnbd * flexnbd, struct acl * acl )
{
NULLCHECK(flexnbd);
server_replace_acl(flexnbd_server(flexnbd), acl);
NULLCHECK( flexnbd );
server_replace_acl( flexnbd_server(flexnbd), acl );
}
struct status *flexnbd_status_create(struct flexnbd *flexnbd)
struct status * flexnbd_status_create( struct flexnbd * flexnbd )
{
NULLCHECK(flexnbd);
struct status *status;
NULLCHECK( flexnbd );
struct status * status;
status = status_create(flexnbd_server(flexnbd));
return status;
status = status_create( flexnbd_server( flexnbd ) );
return status;
}
void flexnbd_set_server(struct flexnbd *flexnbd, struct server *serve)
void flexnbd_set_server( struct flexnbd * flexnbd, struct server * serve )
{
NULLCHECK(flexnbd);
flexnbd->serve = serve;
NULLCHECK( flexnbd );
flexnbd->serve = serve;
}
/* Get the default_deny of the current server object. */
int flexnbd_default_deny(struct flexnbd *flexnbd)
int flexnbd_default_deny( struct flexnbd * flexnbd )
{
NULLCHECK(flexnbd);
return server_default_deny(flexnbd->serve);
NULLCHECK( flexnbd );
return server_default_deny( flexnbd->serve );
}
void make_writable(const char *filename)
void make_writable( const char * filename )
{
NULLCHECK(filename);
FATAL_IF_NEGATIVE(chmod(filename, S_IWUSR),
"Couldn't chmod %s: %s", filename, strerror(errno));
NULLCHECK( filename );
FATAL_IF_NEGATIVE( chmod( filename, S_IWUSR ),
"Couldn't chmod %s: %s",
filename,
strerror( errno ) );
}
int flexnbd_serve(struct flexnbd *flexnbd)
int flexnbd_serve( struct flexnbd * flexnbd )
{
NULLCHECK(flexnbd);
int success;
struct self_pipe *open_signal = NULL;
NULLCHECK( flexnbd );
int success;
struct self_pipe * open_signal = NULL;
if (flexnbd->control) {
debug("Spawning control thread");
flexnbd_spawn_control(flexnbd);
open_signal = flexnbd->control->open_signal;
}
if ( flexnbd->control ){
debug( "Spawning control thread" );
flexnbd_spawn_control( flexnbd );
open_signal = flexnbd->control->open_signal;
}
success = do_serve(flexnbd->serve, open_signal);
debug("do_serve success is %d", success);
success = do_serve( flexnbd->serve, open_signal );
debug("do_serve success is %d", success );
if (flexnbd->control) {
debug("Stopping control thread");
flexnbd_stop_control(flexnbd);
debug("Control thread stopped");
}
if ( flexnbd->control ) {
debug( "Stopping control thread" );
flexnbd_stop_control( flexnbd );
debug("Control thread stopped");
}
return success;
return success;
}

View File

@@ -13,51 +13,54 @@
/* Carries the "globals". */
struct flexnbd {
/* Our serve pointer should never be dereferenced outside a
* flexnbd_switch_lock/unlock pair.
*/
struct server *serve;
/* Our serve pointer should never be dereferenced outside a
* flexnbd_switch_lock/unlock pair.
*/
struct server * serve;
/* We only have a control object if a control socket name was
* passed on the command line.
*/
struct control *control;
/* We only have a control object if a control socket name was
* passed on the command line.
*/
struct control * control;
/* File descriptor for a signalfd(2) signal stream. */
int signal_fd;
/* File descriptor for a signalfd(2) signal stream. */
int signal_fd;
};
struct flexnbd *flexnbd_create(void);
struct flexnbd *flexnbd_create_serving(char *s_ip_address,
char *s_port,
char *s_file,
char *s_ctrl_sock,
int default_deny,
int acl_entries,
char **s_acl_entries,
int max_nbd_clients,
int use_killswitch);
struct flexnbd * flexnbd_create(void);
struct flexnbd * flexnbd_create_serving(
char* s_ip_address,
char* s_port,
char* s_file,
char* s_ctrl_sock,
int default_deny,
int acl_entries,
char** s_acl_entries,
int max_nbd_clients,
int use_killswitch);
struct flexnbd *flexnbd_create_listening(char *s_ip_address,
char *s_port,
char *s_file,
char *s_ctrl_sock,
int default_deny,
int acl_entries,
char **s_acl_entries);
struct flexnbd * flexnbd_create_listening(
char* s_ip_address,
char* s_port,
char* s_file,
char* s_ctrl_sock,
int default_deny,
int acl_entries,
char** s_acl_entries );
void flexnbd_destroy(struct flexnbd *);
void flexnbd_destroy( struct flexnbd * );
enum mirror_state;
enum mirror_state flexnbd_get_mirror_state(struct flexnbd *);
int flexnbd_default_deny(struct flexnbd *);
void flexnbd_set_server(struct flexnbd *flexnbd, struct server *serve);
int flexnbd_signal_fd(struct flexnbd *flexnbd);
enum mirror_state flexnbd_get_mirror_state( struct flexnbd * );
int flexnbd_default_deny( struct flexnbd * );
void flexnbd_set_server( struct flexnbd * flexnbd, struct server * serve );
int flexnbd_signal_fd( struct flexnbd * flexnbd );
int flexnbd_serve(struct flexnbd *flexnbd);
int flexnbd_proxy(struct flexnbd *flexnbd);
struct server *flexnbd_server(struct flexnbd *flexnbd);
void flexnbd_replace_acl(struct flexnbd *flexnbd, struct acl *acl);
struct status *flexnbd_status_create(struct flexnbd *flexnbd);
int flexnbd_serve( struct flexnbd * flexnbd );
int flexnbd_proxy( struct flexnbd * flexnbd );
struct server * flexnbd_server( struct flexnbd * flexnbd );
void flexnbd_replace_acl( struct flexnbd * flexnbd, struct acl * acl );
struct status * flexnbd_status_create( struct flexnbd * flexnbd );
#endif

View File

@@ -4,70 +4,72 @@
#include <pthread.h>
struct flexthread_mutex *flexthread_mutex_create(void)
struct flexthread_mutex * flexthread_mutex_create(void)
{
struct flexthread_mutex *ftm =
xmalloc(sizeof(struct flexthread_mutex));
struct flexthread_mutex * ftm =
xmalloc( sizeof( struct flexthread_mutex ) );
FATAL_UNLESS(0 == pthread_mutex_init(&ftm->mutex, NULL),
"Mutex initialisation failed");
return ftm;
FATAL_UNLESS( 0 == pthread_mutex_init( &ftm->mutex, NULL ),
"Mutex initialisation failed" );
return ftm;
}
void flexthread_mutex_destroy(struct flexthread_mutex *ftm)
void flexthread_mutex_destroy( struct flexthread_mutex * ftm )
{
NULLCHECK(ftm);
NULLCHECK( ftm );
if (flexthread_mutex_held(ftm)) {
flexthread_mutex_unlock(ftm);
} else if ((pthread_t) NULL != ftm->holder) {
/* This "should never happen": if we can try to destroy
* a mutex currently held by another thread, there's a
* logic bug somewhere. I know the test here is racy,
* but there's not a lot we can do about it at this
* point.
*/
fatal("Attempted to destroy a flexthread_mutex"
" held by another thread!");
}
if( flexthread_mutex_held( ftm ) ) {
flexthread_mutex_unlock( ftm );
}
else if ( (pthread_t)NULL != ftm->holder ) {
/* This "should never happen": if we can try to destroy
* a mutex currently held by another thread, there's a
* logic bug somewhere. I know the test here is racy,
* but there's not a lot we can do about it at this
* point.
*/
fatal( "Attempted to destroy a flexthread_mutex"\
" held by another thread!" );
}
FATAL_UNLESS(0 == pthread_mutex_destroy(&ftm->mutex),
"Mutex destroy failed");
free(ftm);
FATAL_UNLESS( 0 == pthread_mutex_destroy( &ftm->mutex ),
"Mutex destroy failed" );
free( ftm );
}
int flexthread_mutex_lock(struct flexthread_mutex *ftm)
int flexthread_mutex_lock( struct flexthread_mutex * ftm )
{
NULLCHECK(ftm);
NULLCHECK( ftm );
int failure = pthread_mutex_lock(&ftm->mutex);
if (0 == failure) {
ftm->holder = pthread_self();
}
int failure = pthread_mutex_lock( &ftm->mutex );
if ( 0 == failure ) {
ftm->holder = pthread_self();
}
return failure;
return failure;
}
int flexthread_mutex_unlock(struct flexthread_mutex *ftm)
int flexthread_mutex_unlock( struct flexthread_mutex * ftm )
{
NULLCHECK(ftm);
NULLCHECK( ftm );
pthread_t orig = ftm->holder;
ftm->holder = (pthread_t) NULL;
int failure = pthread_mutex_unlock(&ftm->mutex);
if (0 != failure) {
ftm->holder = orig;
}
return failure;
pthread_t orig = ftm->holder;
ftm->holder = (pthread_t)NULL;
int failure = pthread_mutex_unlock( &ftm->mutex );
if ( 0 != failure ) {
ftm->holder = orig;
}
return failure;
}
int flexthread_mutex_held(struct flexthread_mutex *ftm)
int flexthread_mutex_held( struct flexthread_mutex * ftm )
{
NULLCHECK(ftm);
return pthread_self() == ftm->holder;
NULLCHECK( ftm );
return pthread_self() == ftm->holder;
}

View File

@@ -15,15 +15,15 @@
*/
struct flexthread_mutex {
pthread_mutex_t mutex;
pthread_t holder;
pthread_mutex_t mutex;
pthread_t holder;
};
struct flexthread_mutex *flexthread_mutex_create(void);
void flexthread_mutex_destroy(struct flexthread_mutex *);
struct flexthread_mutex * flexthread_mutex_create(void);
void flexthread_mutex_destroy( struct flexthread_mutex * );
int flexthread_mutex_lock(struct flexthread_mutex *);
int flexthread_mutex_unlock(struct flexthread_mutex *);
int flexthread_mutex_held(struct flexthread_mutex *);
int flexthread_mutex_lock( struct flexthread_mutex * );
int flexthread_mutex_unlock( struct flexthread_mutex * );
int flexthread_mutex_held( struct flexthread_mutex * );
#endif

View File

@@ -1,77 +1,73 @@
#include "mbox.h"
#include "util.h"
#include <sys/socket.h>
#include <pthread.h>
struct mbox *mbox_create(void)
DEFINE_FIFO(mbox_item_t, mbox_fifo);
#define ARRAY_SIZE(w) (sizeof(w) / sizeof((w)[0]))
mbox_p mbox_create( void )
{
struct mbox *mbox = xmalloc(sizeof(struct mbox));
FATAL_UNLESS(0 == pthread_cond_init(&mbox->filled_cond, NULL),
"Failed to initialise a condition variable");
FATAL_UNLESS(0 == pthread_cond_init(&mbox->emptied_cond, NULL),
"Failed to initialise a condition variable");
FATAL_UNLESS(0 == pthread_mutex_init(&mbox->mutex, NULL),
"Failed to initialise a mutex");
return mbox;
mbox_p mbox = xmalloc( sizeof( struct mbox_t ) );
int sv[2];
FATAL_UNLESS(socketpair(AF_UNIX, SOCK_STREAM, 0, sv) == 0,
"Failed to socketpair");
mbox->signalw = sv[0];
mbox->signalr = sv[1];
return mbox;
}
void mbox_post(struct mbox *mbox, void *contents)
void mbox_post( mbox_p mbox, mbox_item_t item )
{
pthread_mutex_lock(&mbox->mutex);
{
if (mbox->full) {
pthread_cond_wait(&mbox->emptied_cond, &mbox->mutex);
mbox_fifo_write(&mbox->fifo, item);
{
uint8_t w;
FATAL_UNLESS((write(mbox->signalw, &w, 1)) == 1,
"Write to socketpair");
}
mbox->contents = contents;
mbox->full = 1;
while (0 != pthread_cond_signal(&mbox->filled_cond));
}
pthread_mutex_unlock(&mbox->mutex);
}
void *mbox_contents(struct mbox *mbox)
mbox_item_t mbox_contents( mbox_p mbox )
{
return mbox->contents;
const mbox_item_t zero = {0};
return mbox_fifo_isempty(&mbox->fifo) ?
zero :
mbox_fifo_read_at(&mbox->fifo, 0);
}
int mbox_is_full(struct mbox *mbox)
int mbox_is_full( mbox_p mbox )
{
return mbox->full;
return mbox_fifo_isfull(&mbox->fifo);
}
void *mbox_receive(struct mbox *mbox)
mbox_item_t mbox_receive( mbox_p mbox )
{
NULLCHECK(mbox);
void *result;
NULLCHECK( mbox );
pthread_mutex_lock(&mbox->mutex);
{
if (!mbox->full) {
pthread_cond_wait(&mbox->filled_cond, &mbox->mutex);
while (mbox_fifo_isempty(&mbox->fifo)) {
uint8_t w;
FATAL_UNLESS((read(mbox->signalr, &w, 1)) == 1,
"Read from socketpair");
}
mbox->full = 0;
result = mbox->contents;
mbox->contents = NULL;
while (0 != pthread_cond_signal(&mbox->emptied_cond));
}
pthread_mutex_unlock(&mbox->mutex);
return result;
return mbox_fifo_read(&mbox->fifo);
}
void mbox_destroy(struct mbox *mbox)
void mbox_destroy( mbox_p mbox )
{
NULLCHECK(mbox);
NULLCHECK( mbox );
while (0 != pthread_cond_destroy(&mbox->emptied_cond));
while (0 != pthread_cond_destroy(&mbox->filled_cond));
while (0 != pthread_mutex_destroy(&mbox->mutex));
free(mbox);
close(mbox->signalw);
close(mbox->signalr);
free( mbox );
}

View File

@@ -11,45 +11,43 @@
#include <pthread.h>
#include <stdint.h>
#include "fifo_declare.h"
typedef union {
uint64_t i;
void * p;
} mbox_item_t;
DECLARE_FIFO(mbox_item_t, mbox_fifo, 8);
typedef struct mbox_t {
mbox_fifo_t fifo;
// socketpair() ends
int signalw, signalr;
} mbox_t, *mbox_p;
struct mbox {
void *contents;
/** Marker to tell us if there's content in the box.
* Keeping this separate allows us to use NULL for the contents.
*/
int full;
/** This gets signaled by mbox_post, and waited on by
* mbox_receive */
pthread_cond_t filled_cond;
/** This is signaled by mbox_receive, and waited on by mbox_post */
pthread_cond_t emptied_cond;
pthread_mutex_t mutex;
};
/* Create an mbox. */
struct mbox *mbox_create(void);
/* Create an mbox_t. */
mbox_p mbox_create(void);
/* Put something in the mbox, blocking if it's already full.
* That something can be NULL if you want.
*/
void mbox_post(struct mbox *, void *);
void mbox_post( mbox_p , mbox_item_t item);
/* See what's in the mbox. This isn't thread-safe. */
void *mbox_contents(struct mbox *);
mbox_item_t mbox_contents( mbox_p );
/* See if anything has been put into the mbox. This isn't thread-safe.
* */
int mbox_is_full(struct mbox *);
int mbox_is_full( mbox_p );
/* Get the contents from the mbox, blocking if there's nothing there. */
void *mbox_receive(struct mbox *);
mbox_item_t mbox_receive( mbox_p );
/* Free the mbox and destroy the associated pthread bits. */
void mbox_destroy(struct mbox *);
void mbox_destroy( mbox_p );
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -7,7 +7,7 @@
#include "bitset.h"
#include "self_pipe.h"
enum mirror_state;
#include "serve.h"
#include "mbox.h"
@@ -57,67 +57,67 @@ enum mirror_state;
#define MS_REQUEST_LIMIT_SECS 60
#define MS_REQUEST_LIMIT_SECS_F 60.0
enum mirror_finish_action {
ACTION_EXIT,
ACTION_UNLINK,
ACTION_NOTHING
};
typedef enum {
ACTION_EXIT = 0,
ACTION_UNLINK,
ACTION_NOTHING
} mirror_finish_action_t;
enum mirror_state {
MS_UNKNOWN,
MS_INIT,
MS_GO,
MS_ABANDONED,
MS_DONE,
MS_FAIL_CONNECT,
MS_FAIL_REJECTED,
MS_FAIL_NO_HELLO,
MS_FAIL_SIZE_MISMATCH
};
typedef enum {
MS_UNKNOWN = 0,
MS_INIT,
MS_GO,
MS_ABANDONED,
MS_DONE,
MS_FAIL_CONNECT,
MS_FAIL_REJECTED,
MS_FAIL_NO_HELLO,
MS_FAIL_SIZE_MISMATCH
} mirror_state_t;
struct mirror {
pthread_t thread;
typedef struct mirror_t {
pthread_t thread;
/* Signal to this then join the thread if you want to abandon mirroring */
struct self_pipe *abandon_signal;
/* Signal to this then join the thread if you want to abandon mirroring */
struct self_pipe * abandon_signal;
union mysockaddr *connect_to;
union mysockaddr *connect_from;
int client;
const char *filename;
union mysockaddr * connect_to;
union mysockaddr * connect_from;
int client;
const char * filename;
/* Limiter, used to restrict migration speed Only dirty bytes (those going
* over the network) are considered */
uint64_t max_bytes_per_second;
/* Limiter, used to restrict migration speed Only dirty bytes (those going
* over the network) are considered */
uint64_t max_bytes_per_second;
enum mirror_finish_action action_at_finish;
mirror_finish_action_t action_at_finish;
char *mapped;
char *mapped;
/* We need to send every byte at least once; we do so by */
uint64_t offset;
/* We need to send every byte at least once; we do so by */
uint64_t offset;
enum mirror_state commit_state;
mirror_state_t commit_state;
/* commit_signal is sent immediately after attempting to connect
* and checking the remote size, whether successful or not.
*/
struct mbox *commit_signal;
/* commit_signal is sent immediately after attempting to connect
* and checking the remote size, whether successful or not.
*/
struct mbox_t * commit_signal;
/* The time (from monotonic_time_ms()) the migration was started. Can be
* used to calculate bps, etc. */
uint64_t migration_started;
/* The time (from monotonic_time_ms()) the migration was started. Can be
* used to calculate bps, etc. */
uint64_t migration_started;
/* Running count of all bytes we've transferred */
uint64_t all_dirty;
};
/* Running count of all bytes we've transferred */
uint64_t all_dirty;
} mirror_t, *mirror_p;
struct mirror_super {
struct mirror *mirror;
pthread_t thread;
struct mbox *state_mbox;
};
typedef struct mirror_super_t {
mirror_p mirror;
pthread_t thread;
struct mbox_t * state_mbox;
} mirror_super_t, *mirror_super_p;
@@ -127,13 +127,15 @@ struct mirror_super {
struct server;
struct flexnbd;
struct mirror_super *mirror_super_create(const char *filename,
union mysockaddr *connect_to,
union mysockaddr *connect_from,
uint64_t max_Bps,
enum mirror_finish_action
action_at_finish,
struct mbox *state_mbox);
void *mirror_super_runner(void *serve_uncast);
mirror_super_p mirror_super_create(
const char * filename,
union mysockaddr * connect_to,
union mysockaddr * connect_from,
uint64_t max_Bps,
mirror_finish_action_t action_at_finish,
struct mbox_t * state_mbox
);
void * mirror_super_runner( void * serve_uncast );
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -3,165 +3,165 @@
#include <sys/types.h>
#include <unistd.h>
#include <signal.h> /* for sig_atomic_t */
#include <signal.h> /* for sig_atomic_t */
#include "flexnbd.h"
#include "parse.h"
#include "acl.h"
static const int block_allocation_resolution = 4096; //128<<10;
static const int block_allocation_resolution = 4096;//128<<10;
struct client_tbl_entry {
pthread_t thread;
union mysockaddr address;
struct client *client;
pthread_t thread;
union mysockaddr address;
struct client * client;
};
#define MAX_NBD_CLIENTS 16
#define CLIENT_KEEPALIVE_TIME 30
#define CLIENT_KEEPALIVE_INTVL 10
#define CLIENT_KEEPALIVE_PROBES 3
struct server {
/* The flexnbd wrapper this server is attached to */
struct flexnbd *flexnbd;
/* The flexnbd wrapper this server is attached to */
struct flexnbd * flexnbd;
/** address/port to bind to */
union mysockaddr bind_to;
union mysockaddr bind_to;
/** (static) file name to serve */
char *filename;
char* filename;
/** TCP backlog for listen() */
int tcp_backlog;
int tcp_backlog;
/** (static) file name of UNIX control socket (or NULL if none) */
char *control_socket_name;
char* control_socket_name;
/** size of file */
uint64_t size;
uint64_t size;
/** to interrupt accept loop and clients, write() to close_signal[1] */
struct self_pipe *close_signal;
struct self_pipe * close_signal;
/** access control list */
struct acl *acl;
struct acl * acl;
/** acl_updated_signal will be signalled after the acl struct
* has been replaced
*/
struct self_pipe *acl_updated_signal;
struct self_pipe * acl_updated_signal;
/* Claimed around any updates to the ACL. */
struct flexthread_mutex *l_acl;
/* Claimed around any updates to the ACL. */
struct flexthread_mutex * l_acl;
/* Claimed around starting a mirror so that it doesn't race with
* shutting down on a SIGTERM. */
struct flexthread_mutex *l_start_mirror;
/* Claimed around starting a mirror so that it doesn't race with
* shutting down on a SIGTERM. */
struct flexthread_mutex * l_start_mirror;
struct mirror *mirror;
struct mirror_super *mirror_super;
/* This is used to stop the mirror from starting after we
* receive a SIGTERM */
int mirror_can_start;
struct mirror_t * mirror;
struct mirror_super_t * mirror_super;
/* This is used to stop the mirror from starting after we
* receive a SIGTERM */
int mirror_can_start;
int server_fd;
int control_fd;
int server_fd;
int control_fd;
/* the allocation_map keeps track of which blocks in the backing file
* have been allocated, or part-allocated on disc, with unallocated
* blocks presumed to contain zeroes (i.e. represented as sparse files
* by the filesystem). We can use this information when receiving
* incoming writes, and avoid writing zeroes to unallocated sections
* of the file which would needlessly increase disc usage. This
* bitmap will start at all-zeroes for an empty file, and tend towards
* all-ones as the file is written to (i.e. we assume that allocated
* blocks can never become unallocated again, as is the case with ext3
* at least).
*/
struct bitset *allocation_map;
/* when starting up, this thread builds the allocation_map */
pthread_t allocation_map_builder_thread;
/* the allocation_map keeps track of which blocks in the backing file
* have been allocated, or part-allocated on disc, with unallocated
* blocks presumed to contain zeroes (i.e. represented as sparse files
* by the filesystem). We can use this information when receiving
* incoming writes, and avoid writing zeroes to unallocated sections
* of the file which would needlessly increase disc usage. This
* bitmap will start at all-zeroes for an empty file, and tend towards
* all-ones as the file is written to (i.e. we assume that allocated
* blocks can never become unallocated again, as is the case with ext3
* at least).
*/
struct bitset * allocation_map;
/* when starting up, this thread builds the allocation_map */
pthread_t allocation_map_builder_thread;
/* when the thread has finished, it sets this to 1 */
volatile sig_atomic_t allocation_map_built;
volatile sig_atomic_t allocation_map_not_built;
/* when the thread has finished, it sets this to 1 */
volatile sig_atomic_t allocation_map_built;
volatile sig_atomic_t allocation_map_not_built;
int max_nbd_clients;
struct client_tbl_entry *nbd_client;
int max_nbd_clients;
struct client_tbl_entry *nbd_client;
/** Should clients use the killswitch? */
int use_killswitch;
int use_killswitch;
/** If this isn't set, newly accepted clients will be closed immediately */
int allow_new_clients;
int allow_new_clients;
/* Marker for whether this server has control over the data in
* the file, or if we're waiting to receive it from an inbound
* migration which hasn't yet finished.
*
* It's the value which controls the exit status of a serve or
* listen process.
*/
int success;
/* Marker for whether this server has control over the data in
* the file, or if we're waiting to receive it from an inbound
* migration which hasn't yet finished.
*
* It's the value which controls the exit status of a serve or
* listen process.
*/
int success;
};
struct server *server_create(struct flexnbd *flexnbd,
char *s_ip_address,
char *s_port,
char *s_file,
int default_deny,
int acl_entries,
char **s_acl_entries,
int max_nbd_clients,
int use_killswitch, int success);
void server_destroy(struct server *);
int server_is_closed(struct server *serve);
void serve_signal_close(struct server *serve);
void serve_wait_for_close(struct server *serve);
void server_replace_acl(struct server *serve, struct acl *acl);
void server_control_arrived(struct server *serve);
int server_is_in_control(struct server *serve);
int server_default_deny(struct server *serve);
int server_acl_locked(struct server *serve);
void server_lock_acl(struct server *serve);
void server_unlock_acl(struct server *serve);
void server_lock_start_mirror(struct server *serve);
void server_unlock_start_mirror(struct server *serve);
int server_is_mirroring(struct server *serve);
struct server * server_create(
struct flexnbd * flexnbd,
char* s_ip_address,
char* s_port,
char* s_file,
int default_deny,
int acl_entries,
char** s_acl_entries,
int max_nbd_clients,
int use_killswitch,
int success );
void server_destroy( struct server * );
int server_is_closed(struct server* serve);
void serve_signal_close( struct server *serve );
void serve_wait_for_close( struct server * serve );
void server_replace_acl( struct server *serve, struct acl * acl);
void server_control_arrived( struct server *serve );
int server_is_in_control( struct server *serve );
int server_default_deny( struct server * serve );
int server_acl_locked( struct server * serve );
void server_lock_acl( struct server *serve );
void server_unlock_acl( struct server *serve );
void server_lock_start_mirror( struct server *serve );
void server_unlock_start_mirror( struct server *serve );
int server_is_mirroring( struct server * serve );
uint64_t server_mirror_bytes_remaining(struct server *serve);
uint64_t server_mirror_eta(struct server *serve);
uint64_t server_mirror_bps(struct server *serve);
uint64_t server_mirror_bytes_remaining( struct server * serve );
uint64_t server_mirror_eta( struct server * serve );
uint64_t server_mirror_bps( struct server * serve );
void server_abandon_mirror(struct server *serve);
void server_prevent_mirror_start(struct server *serve);
void server_allow_mirror_start(struct server *serve);
int server_mirror_can_start(struct server *serve);
void server_abandon_mirror( struct server * serve );
void server_prevent_mirror_start( struct server *serve );
void server_allow_mirror_start( struct server *serve );
int server_mirror_can_start( struct server *serve );
/* These three functions are used by mirror around the final pass, to close
* existing clients and prevent new ones from being around
*/
void server_forbid_new_clients(struct server *serve);
void server_close_clients(struct server *serve);
void server_join_clients(struct server *serve);
void server_allow_new_clients(struct server *serve);
void server_forbid_new_clients( struct server *serve );
void server_close_clients( struct server *serve );
void server_join_clients( struct server *serve );
void server_allow_new_clients( struct server *serve );
/* Returns a count (ish) of the number of currently-running client threads */
int server_count_clients(struct server *params);
int server_count_clients( struct server *params );
void server_unlink(struct server *serve);
void server_unlink( struct server * serve );
int do_serve(struct server *, struct self_pipe *);
int do_serve( struct server *, struct self_pipe * );
struct mode_readwrite_params {
union mysockaddr connect_to;
union mysockaddr connect_from;
union mysockaddr connect_to;
union mysockaddr connect_from;
uint64_t from;
uint32_t len;
uint64_t from;
uint32_t len;
int data_fd;
int client;
int data_fd;
int client;
};
#endif

View File

@@ -2,44 +2,41 @@
#include "serve.h"
#include "util.h"
struct status *status_create(struct server *serve)
struct status * status_create( struct server * serve )
{
NULLCHECK(serve);
struct status *status;
NULLCHECK( serve );
struct status * status;
status = xmalloc(sizeof(struct status));
status->pid = getpid();
status->size = serve->size;
status->has_control = serve->success;
status = xmalloc( sizeof( struct status ) );
status->pid = getpid();
status->size = serve->size;
status->has_control = serve->success;
status->clients_allowed = serve->allow_new_clients;
status->num_clients = server_count_clients(serve);
status->clients_allowed = serve->allow_new_clients;
status->num_clients = server_count_clients( serve );
server_lock_start_mirror(serve);
server_lock_start_mirror( serve );
status->is_mirroring = NULL != serve->mirror;
if (status->is_mirroring) {
status->migration_duration = monotonic_time_ms();
status->is_mirroring = NULL != serve->mirror;
if ( status->is_mirroring ) {
status->migration_duration = monotonic_time_ms();
if ((serve->mirror->migration_started) <
status->migration_duration) {
status->migration_duration -= serve->mirror->migration_started;
} else {
status->migration_duration = 0;
if ( ( serve->mirror->migration_started ) < status->migration_duration ) {
status->migration_duration -= serve->mirror->migration_started;
} else {
status->migration_duration = 0;
}
status->migration_duration /= 1000;
status->migration_speed = server_mirror_bps( serve );
status->migration_speed_limit = serve->mirror->max_bytes_per_second;
status->migration_seconds_left = server_mirror_eta( serve );
status->migration_bytes_left = server_mirror_bytes_remaining( serve );
}
status->migration_duration /= 1000;
status->migration_speed = server_mirror_bps(serve);
status->migration_speed_limit =
serve->mirror->max_bytes_per_second;
status->migration_seconds_left = server_mirror_eta(serve);
status->migration_bytes_left =
server_mirror_bytes_remaining(serve);
}
server_unlock_start_mirror( serve );
server_unlock_start_mirror(serve);
return status;
return status;
}
@@ -51,32 +48,33 @@ struct status *status_create(struct server *serve)
#define PRINT_UINT64( var ) \
do{dprintf( fd, #var "=%"PRIu64" ", status->var );}while(0)
int status_write(struct status *status, int fd)
int status_write( struct status * status, int fd )
{
PRINT_INT(pid);
PRINT_UINT64(size);
PRINT_BOOL(is_mirroring);
PRINT_BOOL(clients_allowed);
PRINT_INT(num_clients);
PRINT_BOOL(has_control);
PRINT_INT( pid );
PRINT_UINT64( size );
PRINT_BOOL( is_mirroring );
PRINT_BOOL( clients_allowed );
PRINT_INT( num_clients );
PRINT_BOOL( has_control );
if (status->is_mirroring) {
PRINT_UINT64(migration_speed);
PRINT_UINT64(migration_duration);
PRINT_UINT64(migration_seconds_left);
PRINT_UINT64(migration_bytes_left);
if (status->migration_speed_limit < UINT64_MAX) {
PRINT_UINT64(migration_speed_limit);
};
}
if ( status->is_mirroring ) {
PRINT_UINT64( migration_speed );
PRINT_UINT64( migration_duration );
PRINT_UINT64( migration_seconds_left );
PRINT_UINT64( migration_bytes_left );
if ( status->migration_speed_limit < UINT64_MAX ) {
PRINT_UINT64( migration_speed_limit );
};
}
dprintf(fd, "\n");
return 1;
dprintf(fd, "\n");
return 1;
}
void status_destroy(struct status *status)
void status_destroy( struct status * status )
{
NULLCHECK(status);
free(status);
NULLCHECK( status );
free( status );
}

View File

@@ -75,29 +75,30 @@
#include <unistd.h>
struct status {
pid_t pid;
uint64_t size;
int has_control;
int clients_allowed;
int num_clients;
int is_mirroring;
pid_t pid;
uint64_t size;
int has_control;
int clients_allowed;
int num_clients;
int is_mirroring;
uint64_t migration_duration;
uint64_t migration_speed;
uint64_t migration_speed_limit;
uint64_t migration_seconds_left;
uint64_t migration_bytes_left;
uint64_t migration_duration;
uint64_t migration_speed;
uint64_t migration_speed_limit;
uint64_t migration_seconds_left;
uint64_t migration_bytes_left;
};
/** Create a status object for the given server. */
struct status *status_create(struct server *);
struct status * status_create( struct server * );
/** Output the given status object to the given file descriptot */
int status_write(struct status *, int fd);
int status_write( struct status *, int fd );
/** Free the status object */
void status_destroy(struct status *);
void status_destroy( struct status * );
#endif

View File

@@ -1,42 +1,39 @@
# encoding: utf-8
require 'flexnbd'
require 'file_writer'
class Environment
attr_reader(:blocksize, :filename1, :filename2, :ip,
:port1, :port2, :nbd1, :nbd2, :file1, :file2)
attr_reader( :blocksize, :filename1, :filename2, :ip,
:port1, :port2, :nbd1, :nbd2, :file1, :file2 )
def initialize
@blocksize = 1024
@filename1 = "/tmp/.flexnbd.test.#{$PROCESS_ID}.#{Time.now.to_i}.1"
@filename2 = "/tmp/.flexnbd.test.#{$PROCESS_ID}.#{Time.now.to_i}.2"
@ip = '127.0.0.1'
@available_ports = [*40_000..41_000] - listening_ports
@filename1 = "/tmp/.flexnbd.test.#{$$}.#{Time.now.to_i}.1"
@filename2 = "/tmp/.flexnbd.test.#{$$}.#{Time.now.to_i}.2"
@ip = "127.0.0.1"
@available_ports = [*40000..41000] - listening_ports
@port1 = @available_ports.shift
@port2 = @available_ports.shift
@nbd1 = FlexNBD::FlexNBD.new('../../build/flexnbd', @ip, @port1)
@nbd2 = FlexNBD::FlexNBD.new('../../build/flexnbd', @ip, @port2)
@nbd1 = FlexNBD::FlexNBD.new("../../build/flexnbd", @ip, @port1)
@nbd2 = FlexNBD::FlexNBD.new("../../build/flexnbd", @ip, @port2)
@fake_pid = nil
end
def blocksize=(b)
raise RuntimeError, "Unable to change blocksize after files have been opened" if @file1 or @file2
@blocksize = b
end
def prefetch_proxy!
@nbd1.prefetch_proxy = true
@nbd2.prefetch_proxy = true
end
def proxy1(port = @port2)
def proxy1(port=@port2)
@nbd1.proxy(@ip, port)
end
def proxy2(port = @port1)
def proxy2(port=@port1)
@nbd2.proxy(@ip, port)
end
def serve1(*acl)
@nbd1.serve(@filename1, *acl)
end
@@ -45,26 +42,29 @@ class Environment
@nbd2.serve(@filename2, *acl)
end
def listen1(*acl)
@nbd1.listen(@filename1, *(acl.empty? ? @acl1 : acl))
def listen1( *acl )
@nbd1.listen( @filename1, *(acl.empty? ? @acl1: acl) )
end
def listen2(*acl)
@nbd2.listen(@filename2, *acl)
def listen2( *acl )
@nbd2.listen( @filename2, *acl )
end
def break1
@nbd1.break
end
def acl1(*acl)
@nbd1.acl(*acl)
def acl1( *acl )
@nbd1.acl( *acl )
end
def acl2(*acl)
@nbd2.acl(*acl)
def acl2( *acl )
@nbd2.acl( *acl )
end
def status1
@nbd1.status.first
end
@@ -73,20 +73,23 @@ class Environment
@nbd2.status.first
end
def mirror12
@nbd1.mirror(@nbd2.ip, @nbd2.port)
@nbd1.mirror( @nbd2.ip, @nbd2.port )
end
def mirror12_unchecked
@nbd1.mirror_unchecked(@nbd2.ip, @nbd2.port, nil, nil, 10)
@nbd1.mirror_unchecked( @nbd2.ip, @nbd2.port, nil, nil, 10 )
end
def mirror12_unlink
@nbd1.mirror_unlink(@nbd2.ip, @nbd2.port, 2)
@nbd1.mirror_unlink( @nbd2.ip, @nbd2.port, 2 )
end
def write1(data)
@nbd1.write(0, data)
def write1( data )
@nbd1.write( 0, data )
end
def writefile1(data)
@@ -97,54 +100,63 @@ class Environment
@file2 = FileWriter.new(@filename2, @blocksize).write(data)
end
def truncate1(size)
def truncate1( size )
system "truncate -s #{size} #{@filename1}"
end
def listening_ports
`netstat -ltn`
.split("\n")
.map { |x| x.split(/\s+/) }[2..-1]
.map { |l| l[3].split(':')[-1].to_i }
`netstat -ltn`.
split("\n").
map { |x| x.split(/\s+/) }[2..-1].
map { |l| l[3].split(":")[-1].to_i }
end
def cleanup
if @fake_pid
begin
Process.waitpid2(@fake_pid)
Process.waitpid2( @fake_pid )
rescue Errno::ESRCH
end
end
@nbd1.can_die(0)
@nbd1.kill
@nbd2.kill
[@filename1, @filename2].each do |f|
File.unlink(f) if File.exist?(f)
File.unlink(f) if File.exists?(f)
end
end
def run_fake(name, addr, port, sock = nil)
fakedir = File.join(File.dirname(__FILE__), 'fakes')
fakeglob = File.join(fakedir, name) + '*'
fake = Dir[fakeglob].sort.find do |fn|
File.executable?(fn)
end
def run_fake( name, addr, port, sock=nil )
fakedir = File.join( File.dirname( __FILE__ ), "fakes" )
fakeglob = File.join( fakedir, name ) + "*"
fake = Dir[fakeglob].sort.find { |fn|
File.executable?( fn )
}
raise "no fake executable at #{fakeglob}" unless fake
raise 'no addr' unless addr
raise 'no port' unless port
raise "no addr" unless addr
raise "no port" unless port
@fake_pid = fork do
exec [fake, addr, port, @nbd1.pid, sock].map(&:to_s).join(' ')
exec [fake, addr, port, @nbd1.pid, sock].map{|x| x.to_s}.join(" ")
end
sleep(0.5)
end
def fake_reports_success
_, status = Process.waitpid2(@fake_pid)
_,status = Process.waitpid2( @fake_pid )
@fake_pid = nil
status.success?
end
end # class Environment

View File

@@ -1,4 +1,6 @@
#!/usr/bin/env ruby
# encoding: utf-8
# Open a server, accept a client, then cancel the migration by issuing
# a break command.
@@ -6,27 +8,28 @@ require 'flexnbd/fake_dest'
include FlexNBD
addr, port, src_pid, sock = *ARGV
server = FakeDest.new(addr, port)
server = FakeDest.new( addr, port )
client = server.accept
ctrl = UNIXSocket.open(sock)
ctrl = UNIXSocket.open( sock )
Process.kill('STOP', src_pid.to_i)
ctrl.write("break\n")
Process.kill("STOP", src_pid.to_i)
ctrl.write( "break\n" )
ctrl.close_write
client.write_hello
Process.kill('CONT', src_pid.to_i)
Process.kill("CONT", src_pid.to_i)
raise 'Unexpected control response' unless
fail "Unexpected control response" unless
ctrl.read =~ /0: mirror stopped/
client2 = nil
begin
client2 = server.accept('Expected timeout')
raise 'Unexpected reconnection'
client2 = server.accept( "Expected timeout" )
fail "Unexpected reconnection"
rescue Timeout::Error
# expected
end
client.close
exit(0)

View File

@@ -1,4 +1,6 @@
#!/usr/bin/env ruby
# encoding: utf-8
# Receive a mirror, and disconnect after sending the entrust reply but
# before it can send the disconnect signal.
#
@@ -9,25 +11,26 @@ require 'flexnbd/fake_dest'
include FlexNBD
addr, port, src_pid = *ARGV
server = FakeDest.new(addr, port)
server = FakeDest.new( addr, port )
client = server.accept
client.write_hello
while req = client.read_request; req[:type] == 1
client.read_data(req[:len])
client.write_reply(req[:handle])
while (req = client.read_request; req[:type] == 1)
client.read_data( req[:len] )
client.write_reply( req[:handle] )
end
system "kill -STOP #{src_pid}"
client.write_reply(req[:handle])
client.write_reply( req[:handle] )
client.close
system "kill -CONT #{src_pid}"
sleep(0.25)
client2 = server.accept('Timed out waiting for a reconnection')
sleep( 0.25 )
client2 = server.accept( "Timed out waiting for a reconnection" )
client2.close
server.close
warn 'done'
$stderr.puts "done"
exit(0)

View File

@@ -10,12 +10,12 @@ require 'flexnbd/fake_dest'
include FlexNBD
addr, port = *ARGV
server = FakeDest.new(addr, port)
client = server.accept('Timed out waiting for a connection')
server = FakeDest.new( addr, port )
client = server.accept( "Timed out waiting for a connection" )
client.write_hello
client.close
new_client = server.accept('Timed out waiting for a reconnection')
new_client = server.accept( "Timed out waiting for a reconnection" )
new_client.close
server.close

View File

@@ -11,13 +11,13 @@ require 'flexnbd/fake_dest'
include FlexNBD
addr, port = *ARGV
server = FakeDest.new(addr, port)
client = server.accept('Timed out waiting for a connection')
server = FakeDest.new( addr, port )
client = server.accept( "Timed out waiting for a connection" )
client.write_hello
client.read_request
client.close
new_client = server.accept('Timed out waiting for a reconnection')
new_client = server.accept( "Timed out waiting for a reconnection" )
new_client.close
server.close

View File

@@ -1,4 +1,6 @@
#!/usr/bin/env ruby
# encoding: utf-8
# Open a server, accept a client, then we expect a single write
# followed by an entrust. However, we disconnect after the write so
# the entrust will fail. We don't expect a reconnection: the sender
@@ -8,16 +10,16 @@ require 'flexnbd/fake_dest'
include FlexNBD
addr, port, src_pid = *ARGV
server = FakeDest.new(addr, port)
server = FakeDest.new( addr, port )
client = server.accept
client.write_hello
req = client.read_request
data = client.read_data(req[:len])
data = client.read_data( req[:len] )
Process.kill('STOP', src_pid.to_i)
client.write_reply(req[:handle], 0)
Process.kill("STOP", src_pid.to_i)
client.write_reply( req[:handle], 0 )
client.close
Process.kill('CONT', src_pid.to_i)
Process.kill("CONT", src_pid.to_i)
exit(0)

View File

@@ -1,16 +1,19 @@
#!/usr/bin/env ruby
# encoding: utf-8
require 'flexnbd/fake_dest'
include FlexNBD
addr, port = *ARGV
server = FakeDest.new(addr, port)
server = FakeDest.new( addr, port )
client = server.accept
client.write_hello
handle = client.read_request[:handle]
client.write_error(handle)
client.write_error( handle )
client2 = server.accept('Timed out waiting for a reconnection')
client2 = server.accept( "Timed out waiting for a reconnection" )
client.close
client2.close

View File

@@ -14,8 +14,8 @@ require 'flexnbd/fake_dest'
include FlexNBD
addr, port = *ARGV
server = FakeDest.new(addr, port)
client = server.accept("Client didn't make a connection")
server = FakeDest.new( addr, port )
client = server.accept( "Client didn't make a connection" )
# Sleep for one second past the timeout (a bit of slop in case ruby
# doesn't launch things quickly)
@@ -26,10 +26,10 @@ client.close
# Invert the sense of the timeout exception, since we *don't* want a
# connection attempt
begin
server.accept('Expected timeout')
raise 'Unexpected reconnection'
server.accept( "Expected timeout" )
fail "Unexpected reconnection"
rescue Timeout::Error
# expected
# expected
end
server.close

View File

@@ -1,4 +1,6 @@
#!/usr/bin/env ruby
# encoding: utf-8
# Open a socket, say hello, receive a write, then sleep for >
# MS_REQUEST_LIMIT_SECS seconds. This should tell the source that the
# write has gone MIA, and we expect a reconnect.
@@ -7,24 +9,24 @@ require 'flexnbd/fake_dest'
include FlexNBD
addr, port = *ARGV
server = FakeDest.new(addr, port)
client1 = server.accept(server)
server = FakeDest.new( addr, port )
client1 = server.accept( server )
client1.write_hello
client1.read_request
t = Thread.start do
client2 = server.accept('Timed out waiting for a reconnection',
FlexNBD::MS_REQUEST_LIMIT_SECS + 2)
client2 = server.accept( "Timed out waiting for a reconnection",
FlexNBD::MS_REQUEST_LIMIT_SECS + 2 )
client2.close
end
sleep_time = if ENV.key?('FLEXNBD_MS_REQUEST_LIMIT_SECS')
ENV['FLEXNBD_MS_REQUEST_LIMIT_SECS'].to_f
else
FlexNBD::MS_REQUEST_LIMIT_SECS
sleep_time = if ENV.has_key?('FLEXNBD_MS_REQUEST_LIMIT_SECS')
ENV['FLEXNBD_MS_REQUEST_LIMIT_SECS'].to_f
else
FlexNBD::MS_REQUEST_LIMIT_SECS
end
sleep(sleep_time + 2.0)
sleep( sleep_time + 2.0 )
client1.close
t.join

View File

@@ -7,21 +7,21 @@ include FlexNBD
Thread.abort_on_exception
addr, port = *ARGV
server = FakeDest.new(addr, port)
server = FakeDest.new( addr, port )
client1 = server.accept
# We don't expect a reconnection attempt.
t = Thread.new do
begin
client2 = server.accept('Timed out waiting for a reconnection',
FlexNBD::MS_RETRY_DELAY_SECS + 1)
raise 'Unexpected reconnection'
client2 = server.accept( "Timed out waiting for a reconnection",
FlexNBD::MS_RETRY_DELAY_SECS + 1 )
fail "Unexpected reconnection"
rescue Timeout::Error
# expected
#expected
end
end
client1.write_hello(magic: :wrong)
client1.write_hello( :magic => :wrong )
t.join

View File

@@ -9,7 +9,7 @@ include FlexNBD
Thread.abort_on_exception = true
addr, port = *ARGV
server = FakeDest.new(addr, port)
server = FakeDest.new( addr, port )
client = server.accept
t = Thread.new do
@@ -18,21 +18,21 @@ t = Thread.new do
# so it makes no sense to continue. This means we have to invert the
# sense of the exception.
begin
client2 = server.accept('Timed out waiting for a reconnection',
FlexNBD::MS_RETRY_DELAY_SECS + 1)
client2 = server.accept( "Timed out waiting for a reconnection",
FlexNBD::MS_RETRY_DELAY_SECS + 1 )
client2.close
raise 'Unexpected reconnection.'
fail "Unexpected reconnection."
rescue Timeout::Error
end
end
client.write_hello(size: :wrong)
client.write_hello( :size => :wrong )
t.join
# Now check that the source closed the first socket (yes, this was an
# actual bug)
raise "Didn't close socket" unless client.disconnected?
fail "Didn't close socket" unless client.disconnected?
exit 0

View File

@@ -7,16 +7,18 @@ require 'flexnbd/fake_dest'
include FlexNBD
addr, port = *ARGV
server = FakeDest.new(addr, port)
server = FakeDest.new( addr, port )
server.accept.close
begin
server.accept
raise 'Unexpected reconnection'
fail "Unexpected reconnection"
rescue Timeout::Error
# expected
end
server.close
exit(0)

View File

@@ -8,8 +8,8 @@ require 'flexnbd/fake_dest'
include FlexNBD
addr, port, pid = *ARGV
server = FakeDest.new(addr, port)
client = server.accept('Timed out waiting for a connection')
server = FakeDest.new( addr, port )
client = server.accept( "Timed out waiting for a connection" )
client.write_hello
Process.kill(15, pid.to_i)

View File

@@ -1,4 +1,6 @@
#!/usr/bin/env ruby
# encoding: utf-8
# Accept a connection, write hello, wait for a write request, read the
# data, then write back a reply with a bad magic field. We then
# expect a reconnect.
@@ -7,13 +9,13 @@ require 'flexnbd/fake_dest'
include FlexNBD
addr, port = *ARGV
server = FakeDest.new(addr, port)
server = FakeDest.new( addr, port )
client = server.accept
client.write_hello
req = client.read_request
client.read_data(req[:len])
client.write_reply(req[:handle], 0, magic: :wrong)
client.read_data( req[:len] )
client.write_reply( req[:handle], 0, :magic => :wrong )
client2 = server.accept
client.close

View File

@@ -11,13 +11,13 @@ include FlexNBD
addr, port = *ARGV
FakeSource.new(addr, port, 'Failed to connect').close
# Sleep to be sure we don't try to connect too soon. That wouldn't
# be a problem for the destination, but it would prevent us from
# determining success or failure here in the case where we try to
# reconnect before the destination has tidied up after the first
# thread went away.
FakeSource.new( addr, port, "Failed to connect" ).close
# Sleep to be sure we don't try to connect too soon. That wouldn't
# be a problem for the destination, but it would prevent us from
# determining success or failure here in the case where we try to
# reconnect before the destination has tidied up after the first
# thread went away.
sleep(0.5)
FakeSource.new(addr, port, 'Failed to reconnect').close
FakeSource.new( addr, port, "Failed to reconnect" ).close
exit 0

View File

@@ -11,10 +11,10 @@ include FlexNBD
addr, port, srv_pid = *ARGV
client = FakeSource.new(addr, port, 'Timed out connecting')
client = FakeSource.new( addr, port, "Timed out connecting" )
client.read_hello
client.write_write_request(0, 8)
client.write_data('12345678')
client.write_write_request( 0, 8 )
client.write_data( "12345678" )
# Use system "kill" rather than Process.kill because Process.kill
# doesn't seem to work
@@ -25,11 +25,12 @@ client.close
system "kill -CONT #{srv_pid}"
sleep(0.25)
begin
client2 = FakeSource.new(addr, port, 'Expected timeout')
raise 'Unexpected reconnection'
client2 = FakeSource.new( addr, port, "Expected timeout" )
fail "Unexpected reconnection"
rescue Timeout::Error
# expected
end

View File

@@ -10,10 +10,10 @@ include FlexNBD
addr, port, srv_pid = *ARGV
client = FakeSource.new(addr, port, 'Timed out connecting')
client = FakeSource.new( addr, port, "Timed out connecting" )
client.read_hello
client.write_write_request(0, 8)
client.write_data('12345678')
client.write_write_request( 0, 8 )
client.write_data( "12345678" )
client.write_entrust_request
client.read_response
@@ -21,11 +21,13 @@ client.close
sleep(0.25)
begin
client2 = FakeSource.new(addr, port, 'Expected timeout')
raise 'Unexpected reconnection'
client2 = FakeSource.new( addr, port, "Expected timeout" )
fail "Unexpected reconnection"
rescue Timeout::Error
# expected
end
exit(0)

View File

@@ -12,12 +12,13 @@ include FlexNBD
addr, port = *ARGV
client = FakeSource.new(addr, port, 'Timed out connecting.')
client = FakeSource.new( addr, port, "Timed out connecting." )
client.read_hello
client.close
sleep(0.2)
FakeSource.new(addr, port, 'Timed out reconnecting.')
FakeSource.new( addr, port, "Timed out reconnecting." )
exit(0)

View File

@@ -1,4 +1,6 @@
#!/usr/bin/env ruby
# encoding: utf-8
# We connect, pause the server, issue a write request, disconnect,
# then cont the server. This ensures that our disconnect happens
# while the server is trying to read the write data.
@@ -8,11 +10,11 @@ include FlexNBD
addr, port, srv_pid = *ARGV
client = FakeSource.new(addr, port, 'Timed out connecting')
client = FakeSource.new( addr, port, "Timed out connecting" )
client.read_hello
system "kill -STOP #{srv_pid}"
client.write_write_request(0, 8)
client.write_write_request( 0, 8 )
client.close
system "kill -CONT #{srv_pid}"
@@ -22,7 +24,7 @@ system "kill -CONT #{srv_pid}"
sleep(0.25)
# ...and can we reconnect?
client2 = FakeSource.new(addr, port, 'Timed out connecting')
client2 = FakeSource.new( addr, port, "Timed out connecting" )
client2.close
exit(0)

View File

@@ -1,4 +1,6 @@
#!/usr/bin/env ruby
# encoding: utf-8
# We connect, pause the server, issue a write request, send data,
# disconnect, then cont the server. This ensures that our disconnect
# happens before the server can try to write the reply.
@@ -8,13 +10,13 @@ include FlexNBD
addr, port, srv_pid = *ARGV
client = FakeSource.new(addr, port, 'Timed out connecting')
client = FakeSource.new( addr, port, "Timed out connecting" )
client.read_hello
system "kill -STOP #{srv_pid}"
client.write_write_request(0, 8)
client.write_data('12345678')
client.write_write_request( 0, 8 )
client.write_data( "12345678" )
client.close
system "kill -CONT #{srv_pid}"
@@ -25,7 +27,7 @@ system "kill -CONT #{srv_pid}"
sleep(0.25)
# ...and can we reconnect?
client2 = FakeSource.new(addr, port, 'Timed out reconnecting')
client2 = FakeSource.new( addr, port, "Timed out reconnecting" )
client2.close
exit(0)

View File

@@ -8,9 +8,10 @@ include FlexNBD
addr, port, srv_pid, newaddr, newport = *ARGV
client = FakeSource.new(addr, port, 'Timed out connecting')
client.write_read_request(0, 8)
client.read_raw(4)
client = FakeSource.new( addr, port, "Timed out connecting" )
client.write_read_request( 0, 8 )
client.read_raw( 4 )
client.close
exit(0)

View File

@@ -10,9 +10,9 @@ include FlexNBD
addr, port = *ARGV
client1 = FakeSource.new(addr, port, 'Timed out connecting')
client1 = FakeSource.new( addr, port, "Timed out connecting" )
sleep(0.25)
client2 = FakeSource.new(addr, port, 'Timed out connecting a second time')
client2 = FakeSource.new( addr, port, "Timed out connecting a second time" )
# This is the expected source crashing after connect
client1.close

View File

@@ -1,4 +1,6 @@
#!/usr/bin/env ruby
# encoding: utf-8
# We connect from a local address which should be blocked, sleep for a
# bit, then try to read from the socket. We should get an instant EOF
# as we've been cut off by the destination.
@@ -9,9 +11,10 @@ include FlexNBD
addr, port = *ARGV
client = FakeSource.new(addr, port, 'Timed out connecting', '127.0.0.6')
sleep(0.25)
client = FakeSource.new( addr, port, "Timed out connecting", "127.0.0.6" )
sleep( 0.25 )
rsp = client.disconnected? ? 0 : 1
client.close
exit(rsp)

View File

@@ -7,10 +7,10 @@
# listening for an incoming migration.
addr, port = *ARGV
require 'flexnbd/fake_source'
require "flexnbd/fake_source"
include FlexNBD
client = FakeSource.new(addr, port, 'Timed out connecting')
client = FakeSource.new( addr, port, "Timed out connecting" )
client.read_hello
# Now we do two things:
@@ -24,16 +24,16 @@ client.read_hello
kidpid = fork do
client.close
new_client = nil
sleep(FlexNBD::CLIENT_MAX_WAIT_SECS + 1)
new_client = FakeSource.new(addr, port, 'Timed out reconnecting.')
sleep( FlexNBD::CLIENT_MAX_WAIT_SECS + 1 )
new_client = FakeSource.new( addr, port, "Timed out reconnecting." )
new_client.read_hello
exit 0
end
# Sleep for longer than the child, to give the flexnbd process a bit
# of slop
sleep(FlexNBD::CLIENT_MAX_WAIT_SECS + 3)
sleep( FlexNBD::CLIENT_MAX_WAIT_SECS + 3 )
client.close
_, status = Process.waitpid2(kidpid)
_,status = Process.waitpid2( kidpid )
exit status.exitstatus

View File

@@ -9,10 +9,10 @@ include FlexNBD
addr, port, pid = *ARGV
client = FakeSource.new(addr, port, 'Timed out connecting.')
client = FakeSource.new( addr, port, "Timed out connecting." )
client.read_hello
Process.kill('TERM', pid.to_i)
Process.kill( "TERM", pid.to_i )
sleep(0.2)
client.close

View File

@@ -9,9 +9,10 @@ include FlexNBD
addr, port, srv_pid, newaddr, newport = *ARGV
client = FakeSource.new(addr, port, 'Timed out connecting')
client.send_mirror
client = FakeSource.new( addr, port, "Timed out connecting" )
client.send_mirror()
sleep(1)
exit(0)
exit( 0 )

View File

@@ -1,4 +1,6 @@
#!/usr/bin/env ruby
# encoding: utf-8
# Connect, read the hello then make a write request with an impossible
# (from,len) pair. We expect an error response, and not to be
# disconnected.
@@ -11,20 +13,20 @@ include FlexNBD
addr, port = *ARGV
client = FakeSource.new(addr, port, 'Timed out connecting')
client = FakeSource.new( addr, port, "Timed out connecting" )
hello = client.read_hello
client.write_write_request(hello[:size] + 1, 32, 'myhandle')
client.write_data('1' * 32)
client.write_write_request( hello[:size]+1, 32, "myhandle" )
client.write_data("1"*32)
response = client.read_response
raise 'Not an error' if response[:error] == 0
raise 'Wrong handle' unless response[:handle] == 'myhandle'
fail "Not an error" if response[:error] == 0
fail "Wrong handle" unless "myhandle" == response[:handle]
client.write_write_request(0, 32)
client.write_data('2' * 32)
client.write_write_request( 0, 32 )
client.write_data( "2"*32 )
success_response = client.read_response
raise 'Second write failed' unless success_response[:error] == 0
fail "Second write failed" unless success_response[:error] == 0
client.close
exit(0)

View File

@@ -3,13 +3,13 @@
#
class FileWriter
def initialize(filename, blocksize)
@fh = File.open(filename, 'w+')
@fh = File.open(filename, "w+")
@blocksize = blocksize
@pattern = ''
@pattern = ""
end
def size
@blocksize * @pattern.split('').size
@blocksize * @pattern.split("").size
end
# We write in fixed block sizes, given by "blocksize"
@@ -20,8 +20,8 @@ class FileWriter
def write(data)
@pattern += data
data.split('').each do |code|
if code == '_'
data.split("").each do |code|
if code == "_"
@fh.seek(@blocksize, IO::SEEK_CUR)
else
@fh.write(data(code))
@@ -31,14 +31,15 @@ class FileWriter
self
end
# Returns what the data ought to be at the given offset and length
#
def read_original(off, len)
patterns = @pattern.split('')
patterns.zip((0...patterns.length).to_a)
.map do |blk, blk_off|
def read_original( off, len )
patterns = @pattern.split( "" )
patterns.zip( (0...patterns.length).to_a ).
map { |blk, blk_off|
data(blk, blk_off)
end.join[off...(off + len)]
}.join[off...(off+len)]
end
# Read what's actually in the file
@@ -59,66 +60,68 @@ class FileWriter
protected
def data(code, at = @fh.tell)
def data(code, at=@fh.tell)
case code
when '0', '_'
"\0" * @blocksize
when 'X'
'X' * @blocksize
when 'f'
r = ''
(@blocksize / 4).times do
r += [at].pack('I')
at += 4
end
r
else
raise "Unknown character '#{block}'"
when "0", "_"
"\0" * @blocksize
when "X"
"X" * @blocksize
when "f"
r = ""
(@blocksize/4).times do
r += [at].pack("I")
at += 4
end
r
else
raise "Unknown character '#{block}'"
end
end
end
if $PROGRAM_NAME == __FILE__
if __FILE__==$0
require 'tempfile'
require 'test/unit'
class FileWriterTest < Test::Unit::TestCase
def test_read_original_zeros
Tempfile.open('test_read_original_zeros') do |tempfile|
Tempfile.open("test_read_original_zeros") do |tempfile|
tempfile.close
file = FileWriter.new(tempfile.path, 4096)
file.write('0')
assert_equal file.read(0, 4096), file.read_original(0, 4096)
assert(file.untouched?(0, 4096), 'Untouched file was touched.')
file = FileWriter.new( tempfile.path, 4096 )
file.write( "0" )
assert_equal file.read( 0, 4096 ), file.read_original( 0, 4096 )
assert( file.untouched?(0,4096) , "Untouched file was touched." )
end
end
def test_read_original_offsets
Tempfile.open('test_read_original_offsets') do |tempfile|
Tempfile.open("test_read_original_offsets") do |tempfile|
tempfile.close
file = FileWriter.new(tempfile.path, 4096)
file.write('f')
assert_equal file.read(0, 4096), file.read_original(0, 4096)
assert(file.untouched?(0, 4096), 'Untouched file was touched.')
file = FileWriter.new( tempfile.path, 4096 )
file.write( "f" )
assert_equal file.read( 0, 4096 ), file.read_original( 0, 4096 )
assert( file.untouched?(0,4096) , "Untouched file was touched." )
end
end
def test_file_size
Tempfile.open('test_file_size') do |tempfile|
Tempfile.open("test_file_size") do |tempfile|
tempfile.close
file = FileWriter.new(tempfile.path, 4096)
file.write('f')
assert_equal 4096, File.stat(tempfile.path).size
file = FileWriter.new( tempfile.path, 4096 )
file.write( "f" )
assert_equal 4096, File.stat( tempfile.path ).size
end
end
def test_read_original_size
Tempfile.open('test_read_original_offsets') do |tempfile|
Tempfile.open("test_read_original_offsets") do |tempfile|
tempfile.close
file = FileWriter.new(tempfile.path, 4)
file.write('f' * 4)
file = FileWriter.new( tempfile.path, 4)
file.write( "f"*4 )
assert_equal 4, file.read_original(0, 4).length
end
end
end
end

View File

@@ -4,26 +4,28 @@ require 'open3'
require 'timeout'
require 'rexml/document'
require 'rexml/streamlistener'
require 'English'
Thread.abort_on_exception = true
class Executor
attr_reader :pid
def run(cmd)
@pid = fork { exec cmd }
def run( cmd )
@pid = fork do exec cmd end
end
end # class Executor
class ValgrindExecutor
attr_reader :pid
def run(cmd)
@pid = fork { exec "valgrind --track-origins=yes --suppressions=custom.supp #{cmd}" }
def run( cmd )
@pid = fork do exec "valgrind --track-origins=yes --suppressions=custom.supp #{cmd}" end
end
end # class ValgrindExecutor
class ValgrindKillingExecutor
attr_reader :pid
@@ -31,10 +33,10 @@ class ValgrindKillingExecutor
attr_accessor :what, :kind, :pid
attr_reader :backtrace
def initialize
@backtrace = []
@what = ''
@kind = ''
@pid = ''
@backtrace=[]
@what = ""
@kind = ""
@pid = ""
end
def add_frame
@@ -54,104 +56,115 @@ class ValgrindKillingExecutor
end
def to_s
([@what + " (#{@kind}) in #{@pid}"] + @backtrace.map { |h| "#{h[:file]}:#{h[:line]} #{h[:fn]}" }).join("\n")
([@what + " (#{@kind}) in #{@pid}"] + @backtrace.map{|h| "#{h[:file]}:#{h[:line]} #{h[:fn]}" }).join("\n")
end
end # class Error
class ErrorListener
include REXML::StreamListener
def initialize(killer)
def initialize( killer )
@killer = killer
@error = Error.new
@found = false
end
def text(text)
def text( text )
@text = text
end
def tag_start(tag, _attrs)
def tag_start(tag, attrs)
case tag.to_s
when 'error'
when "error"
@found = true
when 'frame'
when "frame"
@error.add_frame
end
end
def tag_end(tag)
case tag.to_s
when 'what'
when "what"
@error.what = @text if @found
@text = ''
when 'kind'
@text = ""
when "kind"
@error.kind = @text if @found
when 'file'
@error.add_file(@text) if @found
when 'fn'
@error.add_fn(@text) if @found
when 'line'
@error.add_line(@text) if @found
when 'error', 'stack'
@killer.call(@error) if @found
when 'pid'
@error.pid = @text
when "file"
@error.add_file( @text ) if @found
when "fn"
@error.add_fn( @text ) if @found
when "line"
@error.add_line( @text ) if @found
when "error", "stack"
if @found
@killer.call( @error )
end
when "pid"
@error.pid=@text
end
end
end # class ErrorListener
class DebugErrorListener < ErrorListener
def text(txt)
def text( txt )
print txt
super(txt)
super( txt )
end
def tag_start(tag, attrs)
def tag_start( tag, attrs )
print "<#{tag}>"
super(tag, attrs)
super( tag, attrs )
end
def tag_end(tag)
def tag_end( tag )
print "</#{tag}>"
super(tag)
super( tag )
end
end
def initialize
@pid = nil
end
def run(cmd)
def run( cmd )
@io_r, io_w = IO.pipe
@pid = fork { exec("valgrind --suppressions=custom.supp --xml=yes --xml-fd=#{io_w.fileno} " + cmd) }
launch_watch_thread(@pid, @io_r)
@pid = fork do exec( "valgrind --suppressions=custom.supp --xml=yes --xml-fd=#{io_w.fileno} " + cmd ) end
launch_watch_thread( @pid, @io_r )
@pid
end
def call(err)
warn '*' * 72
warn '* Valgrind error spotted:'
warn err.to_s.split("\n").map { |s| " #{s}" }
warn '*' * 72
Process.kill('KILL', @pid)
def call( err )
$stderr.puts "*"*72
$stderr.puts "* Valgrind error spotted:"
$stderr.puts err.to_s.split("\n").map{|s| " #{s}"}
$stderr.puts "*"*72
Process.kill( "KILL", @pid )
exit(1)
end
private
def pick_listener
ENV['DEBUG'] ? DebugErrorListener : ErrorListener
end
def launch_watch_thread(_pid, io_r)
def launch_watch_thread(pid, io_r)
Thread.start do
io_source = REXML::IOSource.new(io_r)
listener = pick_listener.new(self)
REXML::Document.parse_stream(io_source, listener)
io_source = REXML::IOSource.new( io_r )
listener = pick_listener.new( self )
REXML::Document.parse_stream( io_source, listener )
end
end
end # class ValgrindExecutor
module FlexNBD
# Noddy test class to exercise FlexNBD from the outside for testing.
#
@@ -160,7 +173,7 @@ module FlexNBD
class << self
def counter
Dir['tmp/*'].select { |f| File.file?(f) }.length + 1
Dir['tmp/*'].select{|f| File.file?(f)}.length + 1
end
end
@@ -176,18 +189,19 @@ module FlexNBD
end
end
def build_debug_opt
if @do_debug
'--verbose'
"--verbose"
else
'--quiet'
"--quiet"
end
end
attr_accessor :prefetch_proxy
def initialize(bin, ip, port)
@bin = bin
def initialize( bin, ip, port )
@bin = bin
@do_debug = ENV['DEBUG']
@debug = build_debug_opt
raise "#{bin} not executable" unless File.executable?(bin)
@@ -195,20 +209,21 @@ module FlexNBD
@ctrl = "/tmp/.flexnbd.ctrl.#{Time.now.to_i}.#{rand}"
@ip = ip
@port = port
@pid = @wait_thread = nil
@kill = []
@prefetch_proxy = false
end
def debug?
!!@do_debug
end
def debug(msg)
warn msg if debug?
def debug( msg )
$stderr.puts msg if debug?
end
def serve_cmd(file, acl)
def serve_cmd( file, acl )
"#{bin} serve "\
"--addr #{ip} "\
"--port #{port} "\
@@ -218,7 +233,8 @@ module FlexNBD
"#{acl.join(' ')}"
end
def listen_cmd(file, acl)
def listen_cmd( file, acl )
"#{bin} listen "\
"--addr #{ip} "\
"--port #{port} "\
@@ -228,17 +244,18 @@ module FlexNBD
"#{acl.join(' ')}"
end
def proxy_cmd(connect_ip, connect_port)
def proxy_cmd( connect_ip, connect_port )
"#{bin}-proxy "\
"--addr #{ip} "\
"--port #{port} "\
"--conn-addr #{connect_ip} "\
"--conn-port #{connect_port} "\
"#{prefetch_proxy ? '--cache ' : ''}"\
"#{prefetch_proxy ? "--cache " : ""}"\
"#{@debug}"
end
def read_cmd(offset, length)
def read_cmd( offset, length )
"#{bin} read "\
"--addr #{ip} "\
"--port #{port} "\
@@ -247,7 +264,8 @@ module FlexNBD
"--size #{length}"
end
def write_cmd(offset, data)
def write_cmd( offset, data )
"#{bin} write "\
"--addr #{ip} "\
"--port #{port} "\
@@ -256,29 +274,30 @@ module FlexNBD
"--size #{data.length}"
end
def base_mirror_opts(dest_ip, dest_port)
def base_mirror_opts( dest_ip, dest_port )
"--addr #{dest_ip} "\
"--port #{dest_port} "\
"--sock #{ctrl} "\
end
def unlink_mirror_opts(dest_ip, dest_port)
"#{base_mirror_opts(dest_ip, dest_port)} "\
'--unlink '
def unlink_mirror_opts( dest_ip, dest_port )
"#{base_mirror_opts( dest_ip, dest_port )} "\
"--unlink "
end
def base_mirror_cmd(opts)
def base_mirror_cmd( opts )
"#{@bin} mirror "\
"#{opts} "\
"#{@debug}"
end
def mirror_cmd(dest_ip, dest_port)
base_mirror_cmd(base_mirror_opts(dest_ip, dest_port))
base_mirror_cmd( base_mirror_opts( dest_ip, dest_port ) )
end
def mirror_unlink_cmd(dest_ip, dest_port)
base_mirror_cmd(unlink_mirror_opts(dest_ip, dest_port))
def mirror_unlink_cmd( dest_ip, dest_port )
base_mirror_cmd( unlink_mirror_opts( dest_ip, dest_port ) )
end
def break_cmd
@@ -293,64 +312,58 @@ module FlexNBD
"#{@debug}"
end
def acl_cmd(*acl)
def acl_cmd( *acl )
"#{@bin} acl " \
"--sock #{ctrl} "\
"#{@debug} "\
"#{acl.join ' '}"
"#{acl.join " "}"
end
def run_serve_cmd(cmd)
File.unlink(ctrl) if File.exist?(ctrl)
debug(cmd)
File.unlink(ctrl) if File.exists?(ctrl)
debug( cmd )
@pid = @executor.run(cmd)
@pid = @executor.run( cmd )
until File.socket?(ctrl)
while !File.socket?(ctrl)
pid, status = Process.wait2(@pid, Process::WNOHANG)
raise "server did not start (#{cmd})" if pid
sleep 0.1
end
start_wait_thread(@pid)
start_wait_thread( @pid )
at_exit { kill }
end
private :run_serve_cmd
def serve(file, *acl)
cmd = serve_cmd(file, acl)
run_serve_cmd(cmd)
sleep(0.2) until File.exist?(ctrl)
def serve( file, *acl)
cmd = serve_cmd( file, acl )
run_serve_cmd( cmd )
sleep( 0.2 ) until File.exists?( ctrl )
end
def listen(file, *acl)
run_serve_cmd(listen_cmd(file, acl))
run_serve_cmd( listen_cmd( file, acl ) )
end
def tcp_server_open?
# raises if the other side doesn't accept()
sock = begin
TCPSocket.new(ip, port)
rescue StandardError
nil
end
sock = TCPSocket.new(ip, port) rescue nil
success = !!sock
if sock
(begin
sock.close
rescue StandardError
nil
end)
end
( sock.close rescue nil) if sock
success
end
def proxy(connect_ip, connect_port)
cmd = proxy_cmd(connect_ip, connect_port)
debug(cmd)
def proxy( connect_ip, connect_port )
cmd = proxy_cmd( connect_ip, connect_port )
debug( cmd )
@pid = @executor.run(cmd)
@pid = @executor.run( cmd )
until tcp_server_open?
pid, status = Process.wait2(@pid, Process::WNOHANG)
@@ -358,29 +371,31 @@ module FlexNBD
sleep 0.1
end
start_wait_thread(@pid)
start_wait_thread( @pid )
at_exit { kill }
end
def start_wait_thread(pid)
def start_wait_thread( pid )
@wait_thread = Thread.start do
_, status = Process.waitpid2(pid)
_, status = Process.waitpid2( pid )
if @kill
if status.signaled?
raise "flexnbd quit with a bad signal: #{status.inspect}" unless
fail "flexnbd quit with a bad signal: #{status.inspect}" unless
@kill.include? status.termsig
else
raise "flexnbd quit with a bad status: #{status.inspect}" unless
fail "flexnbd quit with a bad status: #{status.inspect}" unless
@kill.include? status.exitstatus
end
else
warn "flexnbd #{self.pid} quit"
raise "flexnbd #{self.pid} quit early with status #{status.to_i}"
$stderr.puts "flexnbd #{self.pid} quit"
fail "flexnbd #{self.pid} quit early with status #{status.to_i}"
end
end
end
def can_die(*status)
status = [0] if status.empty?
@kill += status
@@ -392,7 +407,7 @@ module FlexNBD
can_die(1)
if @pid
begin
Process.kill('INT', @pid)
Process.kill("INT", @pid)
rescue Errno::ESRCH => e
# already dead. Presumably this means it went away after a
# can_die() call.
@@ -402,60 +417,63 @@ module FlexNBD
end
def read(offset, length)
cmd = read_cmd(offset, length)
debug(cmd)
cmd = read_cmd( offset, length )
debug( cmd )
IO.popen(cmd) do |fh|
return fh.read
end
raise IOError, 'NBD read failed' unless $CHILD_STATUS.success?
raise IOError.new "NBD read failed" unless $?.success?
out
end
def write(offset, data)
cmd = write_cmd(offset, data)
debug(cmd)
cmd = write_cmd( offset, data )
debug( cmd )
IO.popen(cmd, 'w') do |fh|
IO.popen(cmd, "w") do |fh|
fh.write(data)
end
raise IOError, 'NBD write failed' unless $CHILD_STATUS.success?
raise IOError.new "NBD write failed" unless $?.success?
nil
end
def join
@wait_thread.join
end
def mirror_unchecked(dest_ip, dest_port, _bandwidth = nil, _action = nil, timeout = nil)
cmd = mirror_cmd(dest_ip, dest_port)
debug(cmd)
maybe_timeout(cmd, timeout)
def mirror_unchecked( dest_ip, dest_port, bandwidth=nil, action=nil, timeout=nil )
cmd = mirror_cmd( dest_ip, dest_port)
debug( cmd )
maybe_timeout( cmd, timeout )
end
def mirror_unlink(dest_ip, dest_port, timeout = nil)
cmd = mirror_unlink_cmd(dest_ip, dest_port)
debug(cmd)
maybe_timeout(cmd, timeout)
def mirror_unlink( dest_ip, dest_port, timeout=nil )
cmd = mirror_unlink_cmd( dest_ip, dest_port )
debug( cmd )
maybe_timeout( cmd, timeout )
end
def maybe_timeout(cmd, timeout = nil)
stdout = ''
stderr = ''
def maybe_timeout(cmd, timeout=nil )
stdout, stderr = "",""
stat = nil
run = proc do
run = Proc.new do
# Ruby 1.9 changed the popen3 api. instead of 3 args, the block
# gets 4. Not only that, but it no longer sets $?, so we have to
# go elsewhere for the process' exit status.
Open3.popen3(cmd) do |io_in, io_out, io_err, maybe_thr|
Open3.popen3( cmd ) do |io_in, io_out, io_err, maybe_thr|
io_in.close
stdout.replace io_out.read
stderr.replace io_err.read
stat = maybe_thr.value if maybe_thr
end
stat ||= $CHILD_STATUS
stat ||= $?
end
if timeout
@@ -467,73 +485,85 @@ module FlexNBD
[stdout, stderr, stat]
end
def mirror(dest_ip, dest_port, bandwidth = nil, action = nil)
stdout, stderr, status = mirror_unchecked(dest_ip, dest_port, bandwidth, action)
raise IOError, "Migrate command failed\n" + stderr unless status.success?
def mirror(dest_ip, dest_port, bandwidth=nil, action=nil)
stdout, stderr, status = mirror_unchecked( dest_ip, dest_port, bandwidth, action )
raise IOError.new( "Migrate command failed\n" + stderr) unless status.success?
stdout
end
def break(timeout = nil)
cmd = break_cmd
debug(cmd)
maybe_timeout(cmd, timeout)
def break(timeout=nil)
cmd = break_cmd
debug( cmd )
maybe_timeout( cmd, timeout )
end
def acl(*acl)
cmd = acl_cmd(*acl)
debug(cmd)
cmd = acl_cmd( *acl )
debug( cmd )
maybe_timeout(cmd, 2)
maybe_timeout( cmd, 2 )
end
def status(timeout = nil)
cmd = status_cmd
debug(cmd)
o, e = maybe_timeout(cmd, timeout)
def status( timeout = nil )
cmd = status_cmd()
debug( cmd )
o,e = maybe_timeout( cmd, timeout )
[parse_status(o), e]
end
def launched?
!!@pid
end
def paused
Process.kill('STOP', @pid)
Process.kill( "STOP", @pid )
yield
ensure
Process.kill('CONT', @pid)
Process.kill( "CONT", @pid )
end
protected
protected
def control_command(*args)
raise 'Server not running' unless @pid
raise "Server not running" unless @pid
args = args.compact
UNIXSocket.open(@ctrl) do |u|
u.write(args.join("\n") + "\n")
code, message = u.readline.split(': ', 2)
code, message = u.readline.split(": ", 2)
return [code, message]
end
end
def parse_status(status)
def parse_status( status )
hsh = {}
status.split(' ').each do |part|
status.split(" ").each do |part|
next if part.strip.empty?
a, b = part.split('=')
a,b = part.split("=")
b.strip!
b = true if b == 'true'
b = false if b == 'false'
b = true if b == "true"
b = false if b == "false"
hsh[a.strip] = b
end
hsh
end
end
end

View File

@@ -1,7 +1,10 @@
# encoding: utf-8
module FlexNBD
def self.binary(str)
def self.binary( str )
if str.respond_to? :force_encoding
str.force_encoding 'ASCII-8BIT'
str.force_encoding "ASCII-8BIT"
else
str
end
@@ -10,33 +13,36 @@ module FlexNBD
# eeevil is his one and only name...
def self.read_constants
parents = []
current = File.expand_path('.')
while current != '/'
current = File.expand_path(".")
while current != "/"
parents << current
current = File.expand_path(File.join(current, '..'))
current = File.expand_path( File.join( current, ".." ) )
end
source_root = parents.find do |dirname|
File.directory?(File.join(dirname, 'src'))
File.directory?( File.join( dirname, "src" ) )
end
raise 'No source root!' unless source_root
fail "No source root!" unless source_root
headers = Dir[File.join(source_root, 'src', '{common,proxy,server}', '*.h')]
headers = Dir[File.join( source_root, "src", "{common,proxy,server}","*.h" ) ]
headers.each do |header_filename|
txt_lines = File.readlines(header_filename)
txt_lines = File.readlines( header_filename )
txt_lines.each do |line|
if line =~ /^#\s*define\s+([A-Z0-9_]+)\s+(\d+)\s*$/
# Bodge until I can figure out what to do with #ifdefs
const_set(Regexp.last_match(1), Regexp.last_match(2).to_i) unless const_defined?(Regexp.last_match(1))
const_set($1, $2.to_i) unless const_defined?( $1 )
end
end
end
end
read_constants
read_constants()
REQUEST_MAGIC = binary("\x25\x60\x95\x13") unless defined?(REQUEST_MAGIC)
REPLY_MAGIC = binary("\x67\x44\x66\x98") unless defined?(REPLY_MAGIC)
end # module FlexNBD

View File

@@ -1,117 +1,120 @@
# encoding: utf-8
require 'socket'
require 'timeout'
require 'io/wait' # For IO#nread
require 'flexnbd/constants'
module FlexNBD
class FakeDest
class Client
def initialize(sock)
def initialize( sock )
@sock = sock
end
def write_hello(opts = {})
@sock.write('NBDMAGIC')
def write_hello( opts = {} )
@sock.write( "NBDMAGIC" )
if opts[:magic] == :wrong
write_rand(@sock, 8)
write_rand( @sock, 8 )
else
@sock.write("\x00\x00\x42\x02\x81\x86\x12\x53")
@sock.write( "\x00\x00\x42\x02\x81\x86\x12\x53" )
end
if opts[:size] == :wrong
write_rand(@sock, 8)
write_rand( @sock, 8 )
else
@sock.write("\x00\x00\x00\x00\x00\x00\x10\x00")
@sock.write( "\x00\x00\x00\x00\x00\x00\x10\x00" )
end
@sock.write("\x00" * 128)
@sock.write( "\x00" * 128 )
end
def write_rand(sock, len)
len.times { sock.write(rand(256).chr) }
def write_rand( sock, len )
len.times do sock.write( rand(256).chr ) end
end
def read_request
def read_request()
req = @sock.read(28)
magic_s = req[0...4]
type_s = req[4...8]
handle_s = req[8...16]
from_s = req[16...24]
len_s = req[24...28]
magic_s = req[0 ... 4 ]
type_s = req[4 ... 8 ]
handle_s = req[8 ... 16]
from_s = req[16 ... 24]
len_s = req[24 ... 28]
{
magic: magic_s,
type: type_s.unpack('N').first,
handle: handle_s,
from: self.class.parse_be64(from_s),
len: len_s.unpack('N').first
:magic => magic_s,
:type => type_s.unpack("N").first,
:handle => handle_s,
:from => self.class.parse_be64( from_s ),
:len => len_s.unpack( "N").first
}
end
def write_error(handle)
write_reply(handle, 1)
end
def nread
@sock.nread
def write_error( handle )
write_reply( handle, 1 )
end
def disconnected?
Timeout.timeout(2) do
@sock.read(1).nil?
begin
Timeout.timeout(2) do
@sock.read(1) == nil
end
rescue Timeout::Error
return false
end
rescue Timeout::Error
return false
end
def write_reply(handle, err = 0, opts = {})
def write_reply( handle, err=0, opts={} )
if opts[:magic] == :wrong
write_rand(@sock, 4)
write_rand( @sock, 4 )
else
@sock.write(::FlexNBD::REPLY_MAGIC)
@sock.write( ::FlexNBD::REPLY_MAGIC )
end
@sock.write([err].pack('N'))
@sock.write(handle)
@sock.write( [err].pack("N") )
@sock.write( handle )
end
def close
@sock.close
end
def read_data(len)
@sock.read(len)
def read_data( len )
@sock.read( len )
end
def write_data(len)
@sock.write(len)
def write_data( len )
@sock.write( len )
end
def getsockopt(level, optname)
@sock.getsockopt(level, optname)
end
def self.parse_be64(str)
raise "String is the wrong length: 8 bytes expected (#{str.length} received)" unless
str.length == 8
top, bottom = str.unpack('NN')
top, bottom = str.unpack("NN")
(top << 32) + bottom
end
def receive_mirror(opts = {})
write_hello
def receive_mirror( opts = {} )
write_hello()
loop do
req = read_request
case req[:type]
when 1
read_data(req[:len])
write_reply(req[:handle])
when 65_536
write_reply(req[:handle], opts[:err] == :entrust ? 1 : 0)
read_data( req[:len] )
write_reply( req[:handle] )
when 65536
write_reply( req[:handle], opts[:err] == :entrust ? 1 : 0 )
break
else
raise "Unexpected request: #{req.inspect}"
@@ -126,13 +129,16 @@ module FlexNBD
raise "Not a disconnect: #{req.inspect}"
end
end
end # class Client
def initialize(addr, port)
@sock = TCPServer.new(addr, port)
def initialize( addr, port )
@sock = TCPServer.new( addr, port )
end
def accept(err_msg = 'Timed out waiting for a connection', timeout = 5)
def accept( err_msg = "Timed out waiting for a connection", timeout = 5)
client_sock = nil
begin
@@ -140,16 +146,21 @@ module FlexNBD
client_sock = @sock.accept
end
rescue Timeout::Error
raise Timeout::Error, err_msg
raise Timeout::Error.new(err_msg)
end
client_sock
Client.new(client_sock)
Client.new( client_sock )
end
def close
@sock.close
end
end # module FakeDest
end # module FlexNBD

View File

@@ -1,117 +1,112 @@
# encoding: utf-8
require 'socket'
require 'timeout'
require "timeout"
require 'flexnbd/constants'
module FlexNBD
class FakeSource
def initialize(addr, port, err_msg, source_addr = nil, source_port = 0)
timing_out(2, err_msg) do
def initialize( addr, port, err_msg, source_addr=nil, source_port=0 )
timing_out( 2, err_msg ) do
begin
@sock = if source_addr
TCPSocket.new(addr, port, source_addr, source_port)
TCPSocket.new( addr, port, source_addr, source_port )
else
TCPSocket.new(addr, port)
TCPSocket.new( addr, port )
end
rescue Errno::ECONNREFUSED
warn 'Connection refused, retrying'
$stderr.puts "Connection refused, retrying"
sleep(0.2)
retry
end
end
end
def close
@sock.close
end
def read_hello
timing_out(::FlexNBD::MS_HELLO_TIME_SECS,
'Timed out waiting for hello.') do
raise 'No hello.' unless (hello = @sock.read(152)) &&
hello.length == 152
passwd_s = hello[0..7]
magic = hello[8..15].unpack('Q>').first
size = hello[16..23].unpack('Q>').first
flags = hello[24..27].unpack('L>').first
reserved = hello[28..-1]
def read_hello()
timing_out( ::FlexNBD::MS_HELLO_TIME_SECS,
"Timed out waiting for hello." ) do
fail "No hello." unless (hello = @sock.read( 152 )) &&
hello.length==152
return { passwd: passwd_s, magic: magic, size: size, flags: flags, reserved: reserved }
magic_s = hello[0..7]
ignore_s= hello[8..15]
size_s = hello[16..23]
size_h, size_l = size_s.unpack("NN")
size = (size_h << 32) + size_l
return { :magic => magic_s, :size => size }
end
end
def send_request(type, handle = 'myhandle', from = 0, len = 0, magic = REQUEST_MAGIC, flags = 0)
raise 'Bad handle' unless handle.length == 8
@sock.write(magic)
@sock.write([flags].pack('n'))
@sock.write([type].pack('n'))
@sock.write(handle)
@sock.write([n64(from)].pack('q'))
@sock.write([len].pack('N'))
def send_request( type, handle="myhandle", from=0, len=0, magic=REQUEST_MAGIC )
fail "Bad handle" unless handle.length == 8
@sock.write( magic )
@sock.write( [type].pack( 'N' ) )
@sock.write( handle )
@sock.write( [n64( from )].pack( 'q' ) )
@sock.write( [len].pack( 'N' ) )
end
def write_write_request(from, len, handle = 'myhandle')
send_request(1, handle, from, len)
def write_write_request( from, len, handle="myhandle" )
send_request( 1, handle, from, len )
end
def write_write_request_with_fua(from, len, handle = 'myhandle')
send_request(1, handle, from, len, REQUEST_MAGIC, 1)
def write_entrust_request( handle="myhandle" )
send_request( 65536, handle )
end
def write_flush_request(handle = 'myhandle')
send_request(3, handle, 0, 0)
def write_disconnect_request( handle="myhandle" )
send_request( 2, handle )
end
def write_entrust_request(handle = 'myhandle')
send_request(65_536, handle)
def write_read_request( from, len, handle="myhandle" )
send_request( 0, "myhandle", from, len )
end
def write_disconnect_request(handle = 'myhandle')
send_request(2, handle)
def write_data( data )
@sock.write( data )
end
def write_read_request(from, len, _handle = 'myhandle')
send_request(0, 'myhandle', from, len)
end
def write_data(data)
@sock.write(data)
end
# Handy utility
def read(from, len)
timing_out(2, 'Timed out reading') do
send_request(0, 'myhandle', from, len)
read_raw(len)
def read( from, len )
timing_out( 2, "Timed out reading" ) do
send_request( 0, "myhandle", from, len )
read_raw( len )
end
end
def read_raw(len)
@sock.read(len)
def read_raw( len )
@sock.read( len )
end
def send_mirror
read_hello
write(0, '12345678')
read_response
write_disconnect_request
close
read_hello()
write( 0, "12345678" )
read_response()
write_disconnect_request()
close()
end
def write(from, data)
write_write_request(from, data.length)
write_data(data)
def write( from, data )
write_write_request( from, data.length )
write_data( data )
end
def write_with_fua(from, data)
write_write_request_with_fua(from, data.length)
write_data(data)
end
def flush
write_flush_request
end
def read_response
magic = @sock.read(4)
@@ -119,25 +114,29 @@ module FlexNBD
handle = @sock.read(8)
{
magic: magic,
error: error_s.unpack('N').first,
handle: handle
:magic => magic,
:error => error_s.unpack("N").first,
:handle => handle
}
end
def disconnected?
result = nil
Timeout.timeout(2) { result = @sock.read(1).nil? }
Timeout.timeout( 2 ) { result = ( @sock.read(1) == nil ) }
result
end
def timing_out(time, msg)
Timeout.timeout(time) do
yield
def timing_out( time, msg )
begin
Timeout.timeout( time ) do
yield
end
rescue Timeout::Error
$stderr.puts msg
exit 1
end
rescue Timeout::Error
warn msg
exit 1
end
private
@@ -147,13 +146,15 @@ module FlexNBD
# )
def n64(b)
((b & 0xff00000000000000) >> 56) |
((b & 0x00ff000000000000) >> 40) |
((b & 0x0000ff0000000000) >> 24) |
((b & 0x000000ff00000000) >> 8) |
((b & 0x00000000ff000000) << 8) |
((b & 0x0000000000ff0000) << 24) |
((b & 0x000000000000ff00) << 40) |
((b & 0x00000000000000ff) << 56)
((b & 0x00ff000000000000) >> 40) |
((b & 0x0000ff0000000000) >> 24) |
((b & 0x000000ff00000000) >> 8) |
((b & 0x00000000ff000000) << 8) |
((b & 0x0000000000ff0000) << 24) |
((b & 0x000000000000ff00) << 40) |
((b & 0x00000000000000ff) << 56)
end
end # class FakeSource
end # module FlexNBD

View File

@@ -1,55 +0,0 @@
require 'tempfile'
#
# LdPreload is a little wrapper for using LD_PRELOAD loggers to pick up system
# calls when testing flexnbd.
#
module LdPreload
#
# This takes an object name, sets up a temporary log file, whose name is
# recorded in the environment as OUTPUT_obj_name, where obj_name is the
# name of the preload module to build and load.
def with_ld_preload(obj_name)
@ld_preload_logs ||= {}
flunk 'Can only load a preload module once!' if @ld_preload_logs[obj_name]
system("make -C ld_preloads/ #{obj_name}.o > /dev/null") ||
flunk("Failed to build object #{obj_name}")
orig_env = ENV['LD_PRELOAD']
ENV['LD_PRELOAD'] = [orig_env, File.expand_path("./ld_preloads/#{obj_name}.o")].compact.join(' ')
# Open the log, and stick it in a hash
@ld_preload_logs[obj_name] = Tempfile.new(obj_name)
ENV['OUTPUT_' + obj_name] = @ld_preload_logs[obj_name].path
yield
ensure
if @ld_preload_logs[obj_name]
@ld_preload_logs[obj_name].close
@ld_preload_logs.delete(obj_name)
end
ENV['LD_PRELOAD'] = orig_env
end
def read_ld_preload_log(obj_name)
lines = []
lines << @ld_preload_logs[obj_name].readline.chomp until
@ld_preload_logs[obj_name].eof?
lines
end
#
# The next to methods assume the log file has one entry per line, and that
# each entry is a series of values separated by colons.
#
def parse_ld_preload_logs(obj_name)
read_ld_preload_log(obj_name).map do |l|
l.split(':').map { |i| i =~ /^\d+$/ ? i.to_i : i }
end
end
def assert_func_call(loglines, args, msg)
re = Regexp.new('^' + args.join(':'))
assert(loglines.any? { |l| l.match(re) }, msg)
end
end

View File

@@ -1,13 +0,0 @@
SRC := $(wildcard *.c)
OBJS := $(SRC:%.c=%.o)
all: $(OBJS)
clean:
$(RM) $(OBJS)
%.o: %.c
gcc -shared -fPIC -ldl -o $@ $<
.PHONY: all clean

View File

@@ -1,33 +0,0 @@
#define _GNU_SOURCE
#include <dlfcn.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
typedef int (*real_msync_t)(void *addr, size_t length, int flags);
int real_msync(void *addr, size_t length, int flags) {
return ((real_msync_t)dlsym(RTLD_NEXT, "msync"))(addr, length, flags);
}
/*
* Noddy LD_PRELOAD wrapper to catch msync calls, and log them to a file.
*/
int msync(void *addr, size_t length, int flags) {
FILE *fd;
char *fn;
int retval;
retval = real_msync(addr, length, flags);
fn = getenv("OUTPUT_msync_logger");
if ( fn != NULL ) {
fd = fopen(fn,"a");
fprintf(fd,"msync:%d:%i:%i:%i\n", addr, length, flags, retval);
fclose(fd);
}
return retval;
}

View File

@@ -1,38 +0,0 @@
#define _GNU_SOURCE
#include <dlfcn.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
/*
* Noddy LD_PRELOAD wrapper to catch setsockopt calls, and log them to a file.
*/
typedef int (*real_setsockopt_t)(int sockfd, int level, int optname, const void *optval, socklen_t optlen);
int real_setsockopt(int sockfd, int level, int optname, const void *optval, socklen_t optlen)
{
return ((real_setsockopt_t)dlsym(RTLD_NEXT, "setsockopt"))(sockfd, level, optname, optval, optlen);
}
int setsockopt(int sockfd, int level, int optname, const void *optval, socklen_t optlen)
{
FILE *fd;
char *fn;
int retval;
retval = real_setsockopt(sockfd, level, optname, optval, optlen);
fn = getenv("OUTPUT_setsockopt_logger");
/*
* Only interested in catching non-null 4-byte (integer) values
*/
if ( fn != NULL && optval != NULL && optlen == 4) {
fd = fopen(fn,"a");
fprintf(fd,"setsockopt:%i:%i:%i:%i:%i\n", sockfd, level, optname, *(int *)optval, retval);
fclose(fd);
}
return retval;
}

2
tests/acceptance/nbd_scenarios Executable file → Normal file
View File

@@ -1,6 +1,6 @@
#!/usr/bin/ruby
test_files = Dir[File.dirname(__FILE__) + '/test*.rb']
test_files = Dir[File.dirname( __FILE__ ) + "/test*.rb"]
for filename in test_files
require filename
end

View File

@@ -1,33 +1,26 @@
# encoding: utf-8
require 'flexnbd/fake_source'
require 'flexnbd/fake_dest'
require 'ld_preload'
module ProxyTests
include LdPreload
def b
"\xFF".b
end
def with_proxied_client(override_size = nil)
def with_proxied_client( override_size = nil )
@env.serve1 unless @server_up
@env.proxy2 unless @proxy_up
@env.nbd2.can_die(0)
client = FlexNBD::FakeSource.new(@env.ip, @env.port2, "Couldn't connect to proxy")
begin
result = client.read_hello
assert_equal 'NBDMAGIC', result[:passwd]
assert_equal "NBDMAGIC", result[:magic]
assert_equal override_size || @env.file1.size, result[:size]
yield client
ensure
begin
client.close
rescue StandardError
nil
end
client.close rescue nil
end
end
@@ -39,11 +32,11 @@ module ProxyTests
with_proxied_client do |client|
(0..3).each do |n|
offset = n * 4096
client.write_read_request(offset, 4096, 'myhandle')
client.write_read_request(offset, 4096, "myhandle")
rsp = client.read_response
assert_equal ::FlexNBD::REPLY_MAGIC, rsp[:magic]
assert_equal 'myhandle', rsp[:handle]
assert_equal "myhandle", rsp[:handle]
assert_equal 0, rsp[:error]
orig_data = @env.file1.read(offset, 4096)
@@ -52,8 +45,8 @@ module ProxyTests
assert_equal 4096, orig_data.size
assert_equal 4096, data.size
assert_equal(orig_data, data,
"Returned data does not match on request #{n + 1}")
assert_equal( orig_data, data,
"Returned data does not match on request #{n+1}" )
end
end
end
@@ -66,30 +59,16 @@ module ProxyTests
rsp = client.read_response
assert_equal FlexNBD::REPLY_MAGIC, rsp[:magic]
assert_equal 'myhandle', rsp[:handle]
assert_equal "myhandle", rsp[:handle]
assert_equal 0, rsp[:error]
data = @env.file1.read(offset, 4096)
assert_equal((b * 4096), data, "Data not written correctly (offset is #{n})")
assert_equal( ( b * 4096 ), data, "Data not written correctly (offset is #{n})" )
end
end
end
def test_write_request_past_end_of_disc_returns_to_client
with_proxied_client do |client|
n = 1000
offset = n * 4096
client.write(offset, b * 4096)
rsp = client.read_response
assert_equal FlexNBD::REPLY_MAGIC, rsp[:magic]
assert_equal 'myhandle', rsp[:handle]
# NBD protocol say ENOSPC (28) in this situation
assert_equal 28, rsp[:error]
end
end
def make_fake_server
server = FlexNBD::FakeDest.new(@env.ip, @env.port1)
@server_up = true
@@ -99,7 +78,7 @@ module ProxyTests
sc = server.accept # just tell the supervisor we're up
sc.write_hello
[server, sc]
[ server, sc ]
end
end
@@ -110,7 +89,7 @@ module ProxyTests
server, sc1 = maker.value
# Send the read request to the proxy
client.write_read_request(0, 4096)
client.write_read_request( 0, 4096 )
# ensure we're given the read request
req1 = sc1.read_request
@@ -131,166 +110,85 @@ module ProxyTests
assert_equal req1, req2
# The reply should be proxied back to the client.
sc2.write_reply(req2[:handle])
sc2.write_data(b * 4096)
sc2.write_reply( req2[:handle] )
sc2.write_data( b * 4096 )
# Check it to make sure it's correct
rsp = Timeout.timeout(15) { client.read_response }
rsp = timeout(15) { client.read_response }
assert_equal ::FlexNBD::REPLY_MAGIC, rsp[:magic]
assert_equal 0, rsp[:error]
assert_equal req1[:handle], rsp[:handle]
data = client.read_raw(4096)
assert_equal((b * 4096), data, 'Wrong data returned')
data = client.read_raw( 4096 )
assert_equal( (b * 4096), data, "Wrong data returned" )
sc2.close
server.close
end
end
def test_write_request_retried_when_upstream_dies_partway
maker = make_fake_server
with_proxied_client(4096) do |client|
server, sc1 = maker.value
# Send the read request to the proxy
client.write( 0, ( b * 4096 ) )
# ensure we're given the read request
req1 = sc1.read_request
assert_equal ::FlexNBD::REQUEST_MAGIC, req1[:magic]
assert_equal ::FlexNBD::REQUEST_WRITE, req1[:type]
assert_equal 0, req1[:from]
assert_equal 4096, req1[:len]
data1 = sc1.read_data( 4096 )
assert_equal( ( b * 4096 ), data1, "Data not proxied successfully" )
# Kill the server again, now we're sure the read request has been sent once
sc1.close
# We expect the proxy to reconnect without our client doing anything.
sc2 = server.accept
sc2.write_hello
# And once reconnected, it should resend an identical request.
req2 = sc2.read_request
assert_equal req1, req2
data2 = sc2.read_data( 4096 )
assert_equal data1, data2
# The reply should be proxied back to the client.
sc2.write_reply( req2[:handle] )
# Check it to make sure it's correct
rsp = timeout(15) { client.read_response }
assert_equal ::FlexNBD::REPLY_MAGIC, rsp[:magic]
assert_equal 0, rsp[:error]
assert_equal req1[:handle], rsp[:handle]
sc2.close
server.close
end
end
def test_write_request_retried_when_upstream_dies_partway
maker = make_fake_server
with_ld_preload('setsockopt_logger') do
with_proxied_client(4096) do |client|
server, sc1 = maker.value
# Send the read request to the proxy
client.write(0, (b * 4096))
# ensure we're given the write request
req1 = sc1.read_request
assert_equal ::FlexNBD::REQUEST_MAGIC, req1[:magic]
assert_equal ::FlexNBD::REQUEST_WRITE, req1[:type]
assert_equal 0, req1[:from]
assert_equal 4096, req1[:len]
data1 = sc1.read_data(4096)
assert_equal((b * 4096), data1, 'Data not proxied successfully')
# Read the setsockopt logs, so we can check that TCP_NODELAY is re-set
# later
read_ld_preload_log('setsockopt_logger')
# Kill the server again, now we're sure the read request has been sent once
sc1.close
# We expect the proxy to reconnect without our client doing anything.
sc2 = server.accept
sc2.write_hello
# And once reconnected, it should resend an identical request.
req2 = sc2.read_request
assert_equal req1, req2
data2 = sc2.read_data(4096)
assert_equal data1, data2
# The reply should be proxied back to the client.
sc2.write_reply(req2[:handle])
# Check it to make sure it's correct
rsp = Timeout.timeout(15) { client.read_response }
assert_equal ::FlexNBD::REPLY_MAGIC, rsp[:magic]
assert_equal 0, rsp[:error]
assert_equal req1[:handle], rsp[:handle]
sc2.close
server.close
# Check TCP_NODELAY was set on the upstream socket
log = read_ld_preload_log('setsockopt_logger')
assert_func_call(log,
['setsockopt', 3,
Socket::SOL_TCP, Socket::TCP_NODELAY, 1, 0],
'TCP_NODELAY not set on upstream fd 3')
end
end
end
def test_write_request_retried_when_upstream_times_out_during_write_phase
ENV['FLEXNBD_UPSTREAM_TIMEOUT'] = '4'
maker = make_fake_server
with_ld_preload('setsockopt_logger') do
with_proxied_client(4096) do |client|
server, sc1 = maker.value
# Guess an approprate request size, based on the send buffer size.
sz = sc1.getsockopt(Socket::SOL_SOCKET, Socket::SO_SNDBUF).int * 4
data1 = (b * sz)
# Send the read request to the proxy
client.write(0, data1)
# ensure we're given the write request
req1 = sc1.read_request
assert_equal ::FlexNBD::REQUEST_MAGIC, req1[:magic]
assert_equal ::FlexNBD::REQUEST_WRITE, req1[:type]
assert_equal 0, req1[:from]
assert_equal data1.size, req1[:len]
# We do not read it at this point, as we want the proxy to be waiting
# in the WRITE_UPSTREAM state.
# Need to sleep longer than the timeout set above
sleep 5
# Check the number of bytes that can be read from the socket without
# blocking. If this equal to the size of the original request, then
# the whole request has been buffered. If this is the case, then the
# proxy will not time-out in the WRITE_UPSTREAM statem which is what
# we're trying to test.
assert sc1.nread < sz, 'Request from proxy completely buffered. Test is useless'
# Kill the server now that the timeout has happened.
sc1.close
# We expect the proxy to reconnect without our client doing anything.
sc2 = server.accept
sc2.write_hello
# And once reconnected, it should resend an identical request.
req2 = sc2.read_request
assert_equal req1, req2
# And now lets read the data to make sure we get it all.
data2 = sc2.read_data(req2[:len])
assert_equal data1, data2
sc2.close
server.close
end
end
end
def test_only_one_client_can_connect_to_proxy_at_a_time
with_proxied_client do |_client|
with_proxied_client do |client|
c2 = nil
assert_raises(Timeout::Error) do
Timeout.timeout(1) do
timeout(1) do
c2 = FlexNBD::FakeSource.new(@env.ip, @env.port2, "Couldn't connect to proxy (2)")
c2.read_hello
end
end
if c2
begin
c2.close
rescue StandardError
nil
end
end
c2.close rescue nil if c2
end
end
def test_maximum_write_request_size
# Defined in src/common/nbdtypes.h
nbd_max_block_size = 32 * 1024 * 1024
@env.writefile1('0' * 40 * 1024)
with_proxied_client do |client|
# This will crash with EPIPE if the proxy dies.
client.write(0, b * nbd_max_block_size)
rsp = client.read_response
assert_equal FlexNBD::REPLY_MAGIC, rsp[:magic]
assert_equal 0, rsp[:error]
end
end
end

View File

@@ -1,10 +1,13 @@
# encoding: utf-8
require 'test/unit'
require 'environment'
class TestDestErrorHandling < Test::Unit::TestCase
class TestDestErrorHandling < Test::Unit::TestCase
def setup
@env = Environment.new
@env.writefile1('0' * 4)
@env.writefile1( "0" * 4 )
@env.listen1
end
@@ -12,77 +15,89 @@ class TestDestErrorHandling < Test::Unit::TestCase
@env.cleanup
end
def test_hello_blocked_by_disconnect_causes_error_not_fatal
run_fake('source/close_after_connect')
run_fake( "source/close_after_connect" )
assert_no_control
end
# # This is disabled while CLIENT_MAX_WAIT_SECS is removed
# def test_hello_goes_astray_causes_timeout_error
# run_fake( "source/hang_after_hello" )
# assert_no_control
# end
=begin
# This is disabled while CLIENT_MAX_WAIT_SECS is removed
def test_hello_goes_astray_causes_timeout_error
run_fake( "source/hang_after_hello" )
assert_no_control
end
=end
def test_sigterm_has_bad_exit_status
@env.nbd1.can_die(1)
run_fake('source/sigterm_after_hello')
run_fake( "source/sigterm_after_hello" )
end
def test_disconnect_after_hello_causes_error_not_fatal
run_fake('source/close_after_hello')
run_fake( "source/close_after_hello" )
assert_no_control
end
def test_partial_read_causes_error
run_fake('source/close_mid_read')
run_fake( "source/close_mid_read" )
end
def test_double_connect_during_hello
run_fake('source/connect_during_hello')
run_fake( "source/connect_during_hello" )
end
def test_acl_rejection
@env.acl1('127.0.0.1')
run_fake('source/connect_from_banned_ip')
@env.acl1("127.0.0.1")
run_fake( "source/connect_from_banned_ip")
end
def test_bad_write
run_fake('source/write_out_of_range')
run_fake( "source/write_out_of_range" )
end
def test_disconnect_before_write_data_causes_error
run_fake('source/close_after_write')
run_fake( "source/close_after_write" )
end
def test_disconnect_before_write_reply_causes_error
# Note that this is an odd case: writing the reply doesn't fail.
# The test passes because the next attempt by flexnbd to read a
# request returns EOF.
run_fake('source/close_after_write_data')
run_fake( "source/close_after_write_data" )
end
def test_straight_migration
@env.nbd1.can_die(0)
run_fake('source/successful_transfer')
run_fake( "source/successful_transfer" )
end
private
def run_fake(name)
@env.run_fake(name, @env.ip, @env.port1)
private
def run_fake( name )
@env.run_fake( name, @env.ip, @env.port1 )
assert @env.fake_reports_success, "#{name} failed."
end
def status
stat, = @env.status1
stat, _ = @env.status1
stat
end
def assert_no_control
assert !status['has_control'], 'Thought it had control'
assert !status['has_control'], "Thought it had control"
end
def assert_control
assert status['has_control'], "Didn't think it had control"
end
end # class TestDestErrorHandling

View File

@@ -1,3 +1,5 @@
# encoding: utf-8
require 'test/unit'
require 'environment'
require 'flexnbd/constants'
@@ -17,18 +19,20 @@ class TestHappyPath < Test::Unit::TestCase
@env.cleanup
end
def test_read1
@env.writefile1('f' * 64)
@env.writefile1("f"*64)
@env.serve1
[0, 12, 63].each do |num|
assert_equal(
bin(@env.nbd1.read(num * @env.blocksize, @env.blocksize)),
bin(@env.file1.read(num * @env.blocksize, @env.blocksize))
bin( @env.nbd1.read(num*@env.blocksize, @env.blocksize) ),
bin( @env.file1.read(num*@env.blocksize, @env.blocksize) )
)
end
[124, 1200, 10_028, 25_488].each do |num|
[124, 1200, 10028, 25488].each do |num|
assert_equal(bin(@env.nbd1.read(num, 4)), bin(@env.file1.read(num, 4)))
end
end
@@ -36,14 +40,14 @@ class TestHappyPath < Test::Unit::TestCase
# Check that we're not
#
def test_writeread1
@env.writefile1('0' * 64)
@env.writefile1("0"*64)
@env.serve1
[0, 12, 63].each do |num|
data = 'X' * @env.blocksize
@env.nbd1.write(num * @env.blocksize, data)
assert_equal(data, @env.file1.read(num * @env.blocksize, data.size))
assert_equal(data, @env.nbd1.read(num * @env.blocksize, data.size))
data = "X"*@env.blocksize
@env.nbd1.write(num*@env.blocksize, data)
assert_equal(data, @env.file1.read(num*@env.blocksize, data.size))
assert_equal(data, @env.nbd1.read(num*@env.blocksize, data.size))
end
end
@@ -51,105 +55,115 @@ class TestHappyPath < Test::Unit::TestCase
# up.
#
def test_writeread2
@env.writefile1('0' * 1024)
@env.writefile1("0"*1024)
@env.serve1
d0 = "\0" * @env.blocksize
d1 = 'X' * @env.blocksize
d0 = "\0"*@env.blocksize
d1 = "X"*@env.blocksize
(0..63).each do |num|
@env.nbd1.write(num * @env.blocksize * 2, d1)
@env.nbd1.write(num*@env.blocksize*2, d1)
end
(0..63).each do |num|
assert_equal(d0, @env.nbd1.read(((2 * num) + 1) * @env.blocksize, d0.size))
assert_equal(d0, @env.nbd1.read(((2*num)+1)*@env.blocksize, d0.size))
end
end
def setup_to_mirror
@env.writefile1('f' * 4)
@env.writefile1( "f"*4 )
@env.serve1
@env.writefile2('0' * 4)
@env.writefile2( "0"*4 )
@env.listen2
end
def test_mirror
@env.nbd1.can_die
@env.nbd2.can_die(0)
setup_to_mirror
setup_to_mirror()
stdout, stderr = @env.mirror12
@env.nbd1.join
@env.nbd2.join
assert(File.file?(@env.filename1),
'The source file was incorrectly deleted')
assert_equal(@env.file1.read_original(0, @env.blocksize),
@env.file2.read(0, @env.blocksize))
assert( File.file?( @env.filename1 ),
"The source file was incorrectly deleted")
assert_equal(@env.file1.read_original( 0, @env.blocksize ),
@env.file2.read( 0, @env.blocksize ) )
end
def test_mirror_unlink
@env.nbd1.can_die(0)
@env.nbd2.can_die(0)
setup_to_mirror
setup_to_mirror()
assert File.file?(@env.filename1)
assert File.file?( @env.filename1 )
stdout, stderr = @env.mirror12_unlink
assert_no_match(/unrecognized/, stderr)
assert_no_match( /unrecognized/, stderr )
Timeout.timeout(10) { @env.nbd1.join }
assert !File.file?(@env.filename1)
Timeout.timeout(10) do @env.nbd1.join end
assert !File.file?( @env.filename1 )
end
def test_write_to_high_block
#
# This test does not work on 32 bit platforms.
#
skip('Not relevant on 32-bit platforms') if ['a'].pack('p').size < 8
#
# This test does not work on 32 bit platforms.
#
skip("Not relevant on 32-bit platforms") if ( ["a"].pack("p").size < 8 )
# Create a large file, then try to write to somewhere after the 2G boundary
@env.truncate1 '4G'
@env.truncate1 "4G"
@env.serve1
@env.nbd1.write(2**31 + 2**29, '12345678')
@env.nbd1.write( 2**31+2**29, "12345678" )
sleep(1)
assert_equal '12345678', @env.nbd1.read(2**31 + 2**29, 8)
assert_equal "12345678", @env.nbd1.read( 2**31+2**29, 8 )
end
def test_set_acl
# Just check that we get sane feedback here
@env.writefile1('f' * 4)
@env.writefile1( "f"*4 )
@env.serve1
_, stderr = @env.acl1('127.0.0.1')
assert_no_match(/^(F|E):/, stderr)
_,stderr = @env.acl1("127.0.0.1")
assert_no_match( /^(F|E):/, stderr )
end
def test_write_more_than_one_run
one_mb = 2**20
data = "\0" * 256 * one_mb
File.open(@env.filename1, 'wb') { |f| f.write('1' * 256 * one_mb) }
File.open(@env.filename1, "wb") do |f| f.write( "1" * 256 * one_mb ) end
@env.serve1
sleep 5
@env.write1(data)
@env.write1( data )
@env.nbd1.can_die(0)
@env.nbd1.kill
i = 0
File.open(@env.filename1, 'rb') do |f|
while mb = f.read(one_mb)
unless "\0" * one_mb == mb
msg = format("Read non-zeros after offset %x:\n", (i * one_mb))
File.open(@env.filename1, "rb") do |f|
while mb = f.read( one_mb )
unless "\0"*one_mb == mb
msg = "Read non-zeros after offset %x:\n"%(i * one_mb)
msg += `hexdump #{@env.filename1} | head -n5`
raise msg
fail msg
end
i += 1
end
end
end
end

View File

@@ -2,6 +2,7 @@ require 'test/unit'
require 'environment'
require 'proxy_tests'
class TestPrefetchProxyMode < Test::Unit::TestCase
include ProxyTests
@@ -9,7 +10,7 @@ class TestPrefetchProxyMode < Test::Unit::TestCase
super
@env = Environment.new
@env.prefetch_proxy!
@env.writefile1('f' * 16)
@env.writefile1( "f" * 16 )
end
def teardown
@@ -17,3 +18,5 @@ class TestPrefetchProxyMode < Test::Unit::TestCase
super
end
end

View File

@@ -2,13 +2,14 @@ require 'test/unit'
require 'environment'
require 'proxy_tests'
class TestProxyMode < Test::Unit::TestCase
include ProxyTests
def setup
super
@env = Environment.new
@env.writefile1('f' * 16)
@env.writefile1( "f" * 16 )
end
def teardown
@@ -16,3 +17,4 @@ class TestProxyMode < Test::Unit::TestCase
super
end
end

View File

@@ -1,15 +1,15 @@
require 'test/unit'
require 'environment'
require 'flexnbd/fake_source'
require 'ld_preload'
class TestServeMode < Test::Unit::TestCase
include LdPreload
def setup
super
@b = "\xFF".b
@env = Environment.new
@env.writefile1( "0" )
@env.serve1
end
def teardown
@@ -18,78 +18,69 @@ class TestServeMode < Test::Unit::TestCase
end
def connect_to_server
@env.writefile1('0')
@env.serve1
client = FlexNBD::FakeSource.new(@env.ip, @env.port1, 'Connecting to server failed')
client = FlexNBD::FakeSource.new(@env.ip, @env.port1, "Connecting to server failed")
begin
result = client.read_hello
assert_equal 'NBDMAGIC', result[:passwd]
assert_equal 0x00420281861253, result[:magic]
assert_equal "NBDMAGIC", result[:magic]
assert_equal @env.file1.size, result[:size]
# See src/common/nbdtypes.h for the various flags. At the moment we
# support HAS_FLAGS (1), SEND_FLUSH (4), SEND_FUA (8)
assert_equal (1 | 4 | 8), result[:flags]
assert_equal "\x0" * 124, result[:reserved]
yield client
ensure
begin
client.close
rescue StandardError
nil
end
client.close rescue nil
end
end
def test_bad_request_magic_receives_error_response
connect_to_server do |client|
# replace REQUEST_MAGIC with all 0s to make it look bad
client.send_request(0, 'myhandle', 0, 0, "\x00\x00\x00\x00")
client.send_request( 0, "myhandle", 0, 0, "\x00\x00\x00\x00" )
rsp = client.read_response
assert_equal FlexNBD::REPLY_MAGIC, rsp[:magic]
assert_equal 'myhandle', rsp[:handle]
assert_equal "myhandle", rsp[:handle]
assert rsp[:error] != 0, "Server sent success reply back: #{rsp[:error]}"
# The client should be disconnected now
assert client.disconnected?, 'Server not disconnected'
assert client.disconnected?, "Server not disconnected"
end
end
def test_long_write_on_top_of_short_write_is_respected
connect_to_server do |client|
# Start with a file of all-zeroes.
client.write(0, "\x00" * @env.file1.size)
client.write( 0, "\x00" * @env.file1.size )
rsp = client.read_response
assert_equal FlexNBD::REPLY_MAGIC, rsp[:magic]
assert_equal 0, rsp[:error]
client.write(0, @b)
client.write( 0, @b )
rsp = client.read_response
assert_equal FlexNBD::REPLY_MAGIC, rsp[:magic]
assert_equal 0, rsp[:error]
client.write(0, @b * 2)
client.write( 0, @b * 2 )
rsp = client.read_response
assert_equal FlexNBD::REPLY_MAGIC, rsp[:magic]
assert_equal 0, rsp[:error]
end
assert_equal @b * 2, @env.file1.read(0, 2)
assert_equal @b * 2, @env.file1.read( 0, 2 )
end
def test_read_request_out_of_bounds_receives_error_response
connect_to_server do |client|
client.write_read_request(@env.file1.size, 4096)
client.write_read_request( @env.file1.size, 4096 )
rsp = client.read_response
assert_equal FlexNBD::REPLY_MAGIC, rsp[:magic]
assert_equal 'myhandle', rsp[:handle]
# NBD protocol suggests ENOSPC (28) is returned
assert_equal 28, rsp[:error], 'Server sent incorrect response'
assert_equal "myhandle", rsp[:handle]
assert rsp[:error] != 0, "Server sent success reply back: #{rsp[:error]}"
# Ensure we're not disconnected by sending a request. We don't care about
# whether the reply is good or not, here.
client.write_read_request(0, 4096)
client.write_read_request( 0, 4096 )
rsp = client.read_response
assert_equal FlexNBD::REPLY_MAGIC, rsp[:magic]
end
@@ -97,127 +88,23 @@ class TestServeMode < Test::Unit::TestCase
def test_write_request_out_of_bounds_receives_error_response
connect_to_server do |client|
client.write(@env.file1.size, "\x00" * 4096)
client.write( @env.file1.size, "\x00" * 4096 )
rsp = client.read_response
assert_equal FlexNBD::REPLY_MAGIC, rsp[:magic]
assert_equal 'myhandle', rsp[:handle]
# NBD protocol suggests ENOSPC (28) is returned
assert_equal 28, rsp[:error], 'Server sent incorrect response'
assert_equal "myhandle", rsp[:handle]
assert rsp[:error] != 0, "Server sent success reply back: #{rsp[:error]}"
# Ensure we're not disconnected by sending a request. We don't care about
# whether the reply is good or not, here.
client.write(0, "\x00" * @env.file1.size)
client.write( 0, "\x00" * @env.file1.size )
rsp = client.read_response
assert_equal FlexNBD::REPLY_MAGIC, rsp[:magic]
end
end
def test_unknown_command_receives_error_response
connect_to_server do |client|
client.send_request(123)
rsp = client.read_response
assert_equal FlexNBD::REPLY_MAGIC, rsp[:magic]
assert_equal 'myhandle', rsp[:handle]
# NBD protocol suggests EINVAL (22) is returned
assert_equal 22, rsp[:error], 'Server sent incorrect response'
# Ensure we're not disconnected by sending a request. We don't care about
# whether the reply is good or not, here.
client.write(0, "\x00" * @env.file1.size)
rsp = client.read_response
assert_equal FlexNBD::REPLY_MAGIC, rsp[:magic]
end
end
def test_flush_is_accepted
with_ld_preload('msync_logger') do
connect_to_server do |client|
client.flush
rsp = client.read_response
assert_equal FlexNBD::REPLY_MAGIC, rsp[:magic]
assert_equal 0, rsp[:error]
end
op = parse_ld_preload_logs('msync_logger')
assert_equal 1, op.count, 'Only one msync expected'
assert_equal @env.blocksize, op.first[2], 'msync length wrong'
assert_equal 6, op.first[3], 'msync called with incorrect flags'
end
end
def test_write_with_fua_is_accepted
with_ld_preload('msync_logger') do
page_size = Integer(`getconf PAGESIZE`)
@env.blocksize = page_size * 10
connect_to_server do |client|
# Write somewhere in the third page
pos = page_size * 3 + 100
client.write_with_fua(pos, "\x00" * 33)
rsp = client.read_response
assert_equal FlexNBD::REPLY_MAGIC, rsp[:magic]
assert_equal 0, rsp[:error]
end
op = parse_ld_preload_logs('msync_logger')
assert_equal 1, op.count, 'Only one msync expected'
# Should be 100 + 33, as we've started writing 100 bytes into a page, for
# 33 bytes
assert_equal 133, op.first[2], 'msync length wrong'
assert_equal 6, op.first[3], 'msync called with incorrect flags'
end
end
def test_odd_size_discs_are_truncated_to_nearest_512
# This should get rounded down to 1024
@env.blocksize = 1024 + 511
@env.writefile1('0')
@env.serve1
client = FlexNBD::FakeSource.new(@env.ip, @env.port1, 'Connecting to server failed')
begin
result = client.read_hello
assert_equal 'NBDMAGIC', result[:passwd]
assert_equal 0x00420281861253, result[:magic]
assert_equal 1024, result[:size]
client.close
end
end
def test_server_sets_tcpkeepalive
with_ld_preload('setsockopt_logger') do
connect_to_server(&:close)
op = read_ld_preload_log('setsockopt_logger')
assert_func_call(op,
['setsockopt', '\d+',
Socket::SOL_SOCKET, Socket::SO_KEEPALIVE, 1, 0],
'TCP Keepalive not successfully set')
assert_func_call(op,
['setsockopt', '\d+',
Socket::SOL_TCP, Socket::TCP_KEEPIDLE, 30, 0],
'TCP Keepalive idle timeout not set to 30s')
assert_func_call(op,
['setsockopt', '\d+',
Socket::SOL_TCP, Socket::TCP_KEEPINTVL, 10, 0],
'TCP keepalive retry time not set to 10s')
assert_func_call(op,
['setsockopt', '\d+',
Socket::SOL_TCP, Socket::TCP_KEEPCNT, 3, 0],
'TCP keepalive count not set to 3')
end
end
def test_status_returns_correct_client_count
@env.writefile1('0')
@env.serve1
assert_equal('0', @env.status1['num_clients'])
client = FlexNBD::FakeSource.new(@env.ip, @env.port1, 'Connecting to server failed')
assert_equal('1', @env.status1['num_clients'])
client2 = FlexNBD::FakeSource.new(@env.ip, @env.port1, 'Connecting to server failed')
assert_equal('2', @env.status1['num_clients'])
client2.close
client.close
assert_equal('0', @env.status1['num_clients'])
end
end

View File

@@ -1,105 +1,126 @@
# encoding: utf-8
require 'test/unit'
require 'environment'
class TestSourceErrorHandling < Test::Unit::TestCase
def setup
@old_env = ENV['FLEXNBD_MS_REQUEST_LIMIT_SECS']
ENV['FLEXNBD_MS_REQUEST_LIMIT_SECS'] = '4.0'
ENV['FLEXNBD_MS_REQUEST_LIMIT_SECS'] = "4.0"
@env = Environment.new
@env.writefile1('f' * 4)
@env.writefile1( "f" * 4 )
@env.serve1
end
def teardown
@env.nbd1.can_die(0)
@env.cleanup
ENV['FLEXNBD_MS_REQUEST_LIMIT_SECS'] = @old_env
end
def expect_term_during_migration
@env.nbd1.can_die(1, 9)
@env.nbd1.can_die(1,9)
end
def test_failure_to_connect_reported_in_mirror_cmd_response
stdout, stderr = @env.mirror12_unchecked
expect_term_during_migration
assert_match(/failed to connect/, stderr)
assert_match( /failed to connect/, stderr )
end
def test_sigterm_after_hello_quits_with_status_of_1
expect_term_during_migration
run_fake('dest/sigterm_after_hello')
run_fake( "dest/sigterm_after_hello" )
end
def test_destination_hangs_after_connect_reports_error_at_source
run_fake('dest/hang_after_connect',
err: /Remote server failed to respond/)
run_fake( "dest/hang_after_connect",
:err => /Remote server failed to respond/ )
end
def test_destination_rejects_connection_reports_error_at_source
run_fake('dest/reject_acl',
err: /Mirror was rejected/)
run_fake( "dest/reject_acl",
:err => /Mirror was rejected/ )
end
def test_wrong_size_causes_disconnect
run_fake('dest/hello_wrong_size',
err: /Remote size does not match local size/)
run_fake( "dest/hello_wrong_size",
:err => /Remote size does not match local size/ )
end
def test_wrong_magic_causes_disconnect
expect_term_during_migration
run_fake('dest/hello_wrong_magic',
err: /Mirror was rejected/)
run_fake( "dest/hello_wrong_magic",
:err => /Mirror was rejected/ )
end
def test_disconnect_after_hello_causes_retry
expect_term_during_migration
run_fake('dest/close_after_hello',
out: /Mirror started/)
run_fake( "dest/close_after_hello",
:out => /Mirror started/ )
end
def test_write_times_out_causes_retry
expect_term_during_migration
run_fake('dest/hang_after_write')
run_fake( "dest/hang_after_write" )
end
def test_rejected_write_causes_retry
expect_term_during_migration
run_fake('dest/error_on_write')
run_fake( "dest/error_on_write" )
end
def test_disconnect_before_write_reply_causes_retry
expect_term_during_migration
run_fake('dest/close_after_write')
run_fake( "dest/close_after_write" )
end
def test_bad_write_reply_causes_retry
expect_term_during_migration
run_fake('dest/write_wrong_magic')
run_fake( "dest/write_wrong_magic" )
end
def test_pre_entrust_disconnect_causes_retry
expect_term_during_migration
run_fake('dest/close_after_writes')
run_fake( "dest/close_after_writes" )
end
def test_cancel_migration
run_fake('dest/break_after_hello')
run_fake( "dest/break_after_hello" )
end
private
def run_fake(name, opts = {})
@env.run_fake(name, @env.ip, @env.port2, @env.nbd1.ctrl)
@env.run_fake( name, @env.ip, @env.port2, @env.nbd1.ctrl )
stdout, stderr = @env.mirror12_unchecked
assert_success
assert_match(opts[:err], stderr) if opts[:err]
assert_match(opts[:out], stdout) if opts[:out]
[stdout, stderr]
assert_match( opts[:err], stderr ) if opts[:err]
assert_match( opts[:out], stdout ) if opts[:out]
return stdout, stderr
end
def assert_success(msg = nil)
assert @env.fake_reports_success, msg || 'Fake failed'
def assert_success( msg=nil )
assert @env.fake_reports_success, msg || "Fake failed"
end
end # class TestSourceErrorHandling

View File

@@ -9,156 +9,138 @@ require 'tmpdir'
Thread.abort_on_exception = true
class TestWriteDuringMigration < Test::Unit::TestCase
def setup
@flexnbd = File.expand_path('../../build/flexnbd')
@flexnbd = File.expand_path("../../build/flexnbd")
raise 'No binary!' unless File.executable?(@flexnbd)
raise "No binary!" unless File.executable?( @flexnbd )
@size = 20 * 1024 * 1024 # 20MB
@write_data = 'foo!' * 2048 # 8K write
@size = 20*1024*1024 # 20MB
@write_data = "foo!" * 2048 # 8K write
@source_port = 9990
@dest_port = 9991
@source_sock = 'src.sock'
@dest_sock = 'dst.sock'
@source_file = 'src.file'
@dest_file = 'dst.file'
@source_sock = "src.sock"
@dest_sock = "dst.sock"
@source_file = "src.file"
@dest_file = "dst.file"
end
def teardown
[@dst_proc, @src_proc].each do |pid|
next unless pid
begin
Process.kill('KILL', pid)
rescue StandardError
nil
if pid
Process.kill( "KILL", pid ) rescue nil
end
end
end
def debug_arg
ENV['DEBUG'] ? '--verbose' : ''
ENV['DEBUG'] ? "--verbose" : ""
end
def launch_servers
@dst_proc = fork do
@dst_proc = fork() {
cmd = "#{@flexnbd} listen -l 127.0.0.1 -p #{@dest_port} -f #{@dest_file} -s #{@dest_sock} #{debug_arg}"
exec cmd
end
}
@src_proc = fork do
@src_proc = fork() {
cmd = "#{@flexnbd} serve -l 127.0.0.1 -p #{@source_port} -f #{@source_file} -s #{@source_sock} #{debug_arg}"
exec cmd
end
}
begin
awaiting = nil
Timeout.timeout(10) do
awaiting = :source
sleep 0.1 until File.exist?(@source_sock)
sleep 0.1 while !File.exists?( @source_sock )
awaiting = :dest
sleep 0.1 until File.exist?(@dest_sock)
sleep 0.1 while !File.exists?( @dest_sock )
end
rescue Timeout::Error
case awaiting
when :source
raise "Couldn't get a source socket."
fail "Couldn't get a source socket."
when :dest
raise "Couldn't get a destination socket."
fail "Couldn't get a destination socket."
else
raise "Something went wrong I don't understand."
fail "Something went wrong I don't understand."
end
end
end
def make_files
def make_files()
FileUtils.touch(@source_file)
File.truncate(@source_file, @size)
FileUtils.touch(@dest_file)
File.truncate(@dest_file, @size)
File.open(@source_file, 'wb') { |f| f.write 'a' * @size }
File.open(@source_file, "wb"){|f| f.write "a"*@size }
end
def start_mirror
UNIXSocket.open(@source_sock) do |sock|
sock.write(['mirror', '127.0.0.1', @dest_port.to_s, 'exit'].join("\x0A") + "\x0A\x0A")
UNIXSocket.open(@source_sock) {|sock|
sock.write(["mirror", "127.0.0.1", @dest_port.to_s, "exit"].join("\x0A") + "\x0A\x0A")
sock.flush
sock.readline
end
rsp = sock.readline
}
end
def stop_mirror
UNIXSocket.open(@source_sock) do |sock|
sock.write("break\x0A\x0A")
sock.flush
sock.readline
end
end
def wait_for_quit
Timeout.timeout(10) do
Process.waitpid2(@dst_proc)
Process.waitpid2(@src_proc)
def wait_for_quit()
Timeout.timeout( 10 ) do
start_time = Time.now
dst_result = Process::waitpid2(@dst_proc)
src_result = Process::waitpid2(@src_proc)
end
end
def source_writer
client = FlexNBD::FakeSource.new('127.0.0.1', @source_port, 'Timed out connecting')
offsets = Range.new(0, (@size - @write_data.size) / 4096).to_a
client = FlexNBD::FakeSource.new( "127.0.0.1", @source_port, "Timed out connecting" )
offsets = Range.new(0, (@size - @write_data.size) / 4096 ).to_a
loop do
begin
client.write(offsets[rand(offsets.size)] * 4096, @write_data)
rescue StandardError
rescue => err
# We expect a broken write at some point, so ignore it
break
end
end
end
def bombard_with_status
loop do
begin
UNIXSocket.open(@source_sock) do |sock|
sock.write("status\x0A\x0A")
sock.flush
sock.readline
end
rescue StandardError
# If the socket disappears, that's OK.
break
end
end
end
def assert_both_sides_identical
# puts `md5sum #{@source_file} #{@dest_file}`
# Ensure each block matches
File.open(@source_file, 'r') do |source|
File.open(@dest_file, 'r') do |dest|
0.upto(@size / 4096) do |block_num|
s_data = source.read(4096)
d_data = dest.read(4096)
File.open(@source_file, "r") do |source|
File.open(@dest_file, "r") do |dest|
0.upto( @size / 4096 ) do |block_num|
s_data = source.read( 4096 )
d_data = dest.read( 4096 )
assert s_data == d_data, "Block #{block_num} mismatch!"
source.seek(4096, IO::SEEK_CUR)
dest.seek(4096, IO::SEEK_CUR)
source.seek( 4096, IO::SEEK_CUR )
dest.seek( 4096, IO::SEEK_CUR )
end
end
end
end
def test_write_during_migration
Dir.mktmpdir do |tmpdir|
Dir.chdir(tmpdir) do
make_files
Dir.mktmpdir() do |tmpdir|
Dir.chdir( tmpdir ) do
make_files()
launch_servers
launch_servers()
src_writer = Thread.new { source_writer }
start_mirror
wait_for_quit
start_mirror()
wait_for_quit()
src_writer.join
assert_both_sides_identical
end
@@ -166,64 +148,24 @@ class TestWriteDuringMigration < Test::Unit::TestCase
end
def test_many_clients_during_migration
Dir.mktmpdir do |tmpdir|
Dir.chdir(tmpdir) do
make_files
Dir.mktmpdir() do |tmpdir|
Dir.chdir( tmpdir ) do
make_files()
launch_servers
launch_servers()
src_writers_1 = (1..5).collect { Thread.new { source_writer } }
start_mirror
start_mirror()
src_writers_2 = (1..5).collect { Thread.new { source_writer } }
wait_for_quit
(src_writers_1 + src_writers_2).each(&:join)
wait_for_quit()
( src_writers_1 + src_writers_2 ).each {|t| t.join }
assert_both_sides_identical
end
end
end
end end
def test_status_call_after_cleanup
Dir.mktmpdir do |tmpdir|
Dir.chdir(tmpdir) do
make_files
launch_servers
status_poker = Thread.new { bombard_with_status }
start_mirror
wait_for_quit
status_poker.join
assert_both_sides_identical
end
end
end
def test_mirroring_can_be_restarted
@size = 100 * 1024 * 1024 # 100MB
Dir.mktmpdir do |tmpdir|
Dir.chdir(tmpdir) do
make_files
launch_servers
# This is a bit racy. It needs to be slow enough that the migration
# isn't finished before the stop runs, and slow enough so that we can
# stop/start a few times.
3.times do
start_mirror
sleep 0.1
stop_mirror
sleep 0.1
end
start_mirror
wait_for_quit
end
end
end
end

View File

@@ -4,229 +4,226 @@
#include "acl.h"
#include "util.h"
START_TEST(test_null_acl)
START_TEST( test_null_acl )
{
struct acl *acl = acl_create(0, NULL, 0);
struct acl *acl = acl_create( 0,NULL, 0 );
fail_if(NULL == acl, "No acl alloced.");
fail_unless(0 == acl->len, "Incorrect length");
fail_if( NULL == acl, "No acl alloced." );
fail_unless( 0 == acl->len, "Incorrect length" );
}
END_TEST
START_TEST(test_parses_single_line)
{
char *lines[] = { "127.0.0.1" };
struct acl *acl = acl_create(1, lines, 0);
fail_unless(1 == acl->len, "Incorrect length.");
fail_if(NULL == acl->entries, "No entries present.");
START_TEST( test_parses_single_line )
{
char *lines[] = {"127.0.0.1"};
struct acl * acl = acl_create( 1, lines, 0 );
fail_unless( 1 == acl->len, "Incorrect length." );
fail_if( NULL == acl->entries, "No entries present." );
}
END_TEST
START_TEST(test_parses_multiple_lines)
START_TEST( test_parses_multiple_lines )
{
char *lines[] = { "127.0.0.1", "::1" };
struct acl *acl = acl_create(2, lines, 0);
union mysockaddr e0, e1;
char *lines[] = {"127.0.0.1", "::1"};
struct acl * acl = acl_create( 2, lines, 0 );
union mysockaddr e0, e1;
parse_ip_to_sockaddr(&e0.generic, lines[0]);
parse_ip_to_sockaddr(&e1.generic, lines[1]);
parse_ip_to_sockaddr( &e0.generic, lines[0] );
parse_ip_to_sockaddr( &e1.generic, lines[1] );
fail_unless(acl->len == 2, "Multiple lines not parsed");
fail_unless( acl->len == 2, "Multiple lines not parsed" );
struct ip_and_mask *entry;
entry = &(*acl->entries)[0];
fail_unless(entry->ip.family == e0.family,
"entry 0 has wrong family!");
entry = &(*acl->entries)[1];
fail_unless(entry->ip.family == e1.family,
"entry 1 has wrong family!");
struct ip_and_mask *entry;
entry = &(*acl->entries)[0];
fail_unless(entry->ip.family == e0.family, "entry 0 has wrong family!");
entry = &(*acl->entries)[1];
fail_unless(entry->ip.family == e1.family, "entry 1 has wrong family!");
}
END_TEST
START_TEST(test_destroy_doesnt_crash)
START_TEST( test_destroy_doesnt_crash )
{
char *lines[] = { "127.0.0.1" };
struct acl *acl = acl_create(1, lines, 0);
char *lines[] = {"127.0.0.1"};
struct acl * acl = acl_create( 1, lines, 0 );
acl_destroy(acl);
acl_destroy( acl );
}
END_TEST
START_TEST(test_includes_single_address)
START_TEST( test_includes_single_address )
{
char *lines[] = { "127.0.0.1" };
struct acl *acl = acl_create(1, lines, 0);
union mysockaddr x;
char *lines[] = {"127.0.0.1"};
struct acl * acl = acl_create( 1, lines, 0 );
union mysockaddr x;
parse_ip_to_sockaddr(&x.generic, "127.0.0.1");
parse_ip_to_sockaddr( &x.generic, "127.0.0.1" );
fail_unless(acl_includes(acl, &x), "Included address wasn't covered");
fail_unless( acl_includes( acl, &x ), "Included address wasn't covered" );
}
END_TEST
START_TEST(test_includes_single_address_when_netmask_specified_ipv4)
START_TEST( test_includes_single_address_when_netmask_specified_ipv4 )
{
char *lines[] = { "127.0.0.1/24" };
struct acl *acl = acl_create(1, lines, 0);
union mysockaddr x;
char *lines[] = {"127.0.0.1/24"};
struct acl * acl = acl_create( 1, lines, 0 );
union mysockaddr x;
parse_ip_to_sockaddr(&x.generic, "127.0.0.0");
fail_unless(acl_includes(acl, &x), "Included address wasn't covered");
parse_ip_to_sockaddr( &x.generic, "127.0.0.0" );
fail_unless( acl_includes( acl, &x ), "Included address wasn't covered" );
parse_ip_to_sockaddr(&x.generic, "127.0.0.1");
fail_unless(acl_includes(acl, &x), "Included address wasn't covered");
parse_ip_to_sockaddr( &x.generic, "127.0.0.1" );
fail_unless( acl_includes( acl, &x ), "Included address wasn't covered" );
parse_ip_to_sockaddr(&x.generic, "127.0.0.255");
fail_unless(acl_includes(acl, &x), "Included address wasn't covered");
parse_ip_to_sockaddr( &x.generic, "127.0.0.255" );
fail_unless( acl_includes( acl, &x ), "Included address wasn't covered" );
}
END_TEST
START_TEST(test_includes_single_address_when_netmask_specified_ipv6)
START_TEST( test_includes_single_address_when_netmask_specified_ipv6 )
{
char *lines[] = { "fe80::/10" };
struct acl *acl = acl_create(1, lines, 0);
union mysockaddr x;
char *lines[] = {"fe80::/10"};
struct acl * acl = acl_create( 1, lines, 0 );
union mysockaddr x;
parse_ip_to_sockaddr(&x.generic, "fe80::1");
fail_unless(acl_includes(acl, &x), "Included address wasn't covered");
parse_ip_to_sockaddr( &x.generic, "fe80::1" );
fail_unless( acl_includes( acl, &x ), "Included address wasn't covered" );
parse_ip_to_sockaddr(&x.generic, "fe80::2");
fail_unless(acl_includes(acl, &x), "Included address wasn't covered");
parse_ip_to_sockaddr( &x.generic, "fe80::2" );
fail_unless( acl_includes( acl, &x ), "Included address wasn't covered" );
parse_ip_to_sockaddr(&x.generic, "fe80:ffff:ffff::ffff");
fail_unless(acl_includes(acl, &x), "Included address wasn't covered");
parse_ip_to_sockaddr( &x.generic, "fe80:ffff:ffff::ffff" );
fail_unless( acl_includes( acl, &x ), "Included address wasn't covered" );
}
END_TEST
START_TEST(test_includes_single_address_when_multiple_entries_exist)
START_TEST( test_includes_single_address_when_multiple_entries_exist )
{
char *lines[] = { "127.0.0.1", "::1" };
struct acl *acl = acl_create(2, lines, 0);
union mysockaddr e0;
union mysockaddr e1;
char *lines[] = {"127.0.0.1", "::1"};
struct acl * acl = acl_create( 2, lines, 0 );
union mysockaddr e0;
union mysockaddr e1;
parse_ip_to_sockaddr(&e0.generic, "127.0.0.1");
parse_ip_to_sockaddr(&e1.generic, "::1");
parse_ip_to_sockaddr( &e0.generic, "127.0.0.1" );
parse_ip_to_sockaddr( &e1.generic, "::1" );
fail_unless(acl_includes(acl, &e0),
"Included address 0 wasn't covered");
fail_unless(acl_includes(acl, &e1),
"Included address 1 wasn't covered");
fail_unless( acl_includes( acl, &e0 ), "Included address 0 wasn't covered" );
fail_unless( acl_includes( acl, &e1 ), "Included address 1 wasn't covered" );
}
END_TEST
START_TEST(test_doesnt_include_other_address)
{
char *lines[] = { "127.0.0.1" };
struct acl *acl = acl_create(1, lines, 0);
union mysockaddr x;
parse_ip_to_sockaddr(&x.generic, "127.0.0.2");
fail_if(acl_includes(acl, &x), "Excluded address was covered.");
START_TEST( test_doesnt_include_other_address )
{
char *lines[] = {"127.0.0.1"};
struct acl * acl = acl_create( 1, lines, 0 );
union mysockaddr x;
parse_ip_to_sockaddr( &x.generic, "127.0.0.2" );
fail_if( acl_includes( acl, &x ), "Excluded address was covered." );
}
END_TEST
START_TEST(test_doesnt_include_other_address_when_netmask_specified)
START_TEST( test_doesnt_include_other_address_when_netmask_specified )
{
char *lines[] = { "127.0.0.1/32" };
struct acl *acl = acl_create(1, lines, 0);
union mysockaddr x;
char *lines[] = {"127.0.0.1/32"};
struct acl * acl = acl_create( 1, lines, 0 );
union mysockaddr x;
parse_ip_to_sockaddr(&x.generic, "127.0.0.2");
fail_if(acl_includes(acl, &x), "Excluded address was covered.");
parse_ip_to_sockaddr( &x.generic, "127.0.0.2" );
fail_if( acl_includes( acl, &x ), "Excluded address was covered." );
}
END_TEST
START_TEST(test_doesnt_include_other_address_when_multiple_entries_exist)
START_TEST( test_doesnt_include_other_address_when_multiple_entries_exist )
{
char *lines[] = { "127.0.0.1", "::1" };
struct acl *acl = acl_create(2, lines, 0);
union mysockaddr e0;
union mysockaddr e1;
char *lines[] = {"127.0.0.1", "::1"};
struct acl * acl = acl_create( 2, lines, 0 );
union mysockaddr e0;
union mysockaddr e1;
parse_ip_to_sockaddr(&e0.generic, "127.0.0.2");
parse_ip_to_sockaddr(&e1.generic, "::2");
parse_ip_to_sockaddr( &e0.generic, "127.0.0.2" );
parse_ip_to_sockaddr( &e1.generic, "::2" );
fail_if(acl_includes(acl, &e0), "Excluded address 0 was covered.");
fail_if(acl_includes(acl, &e1), "Excluded address 1 was covered.");
fail_if( acl_includes( acl, &e0 ), "Excluded address 0 was covered." );
fail_if( acl_includes( acl, &e1 ), "Excluded address 1 was covered." );
}
END_TEST
START_TEST(test_default_deny_rejects)
START_TEST( test_default_deny_rejects )
{
struct acl *acl = acl_create(0, NULL, 1);
union mysockaddr x;
struct acl * acl = acl_create( 0, NULL, 1 );
union mysockaddr x;
parse_ip_to_sockaddr(&x.generic, "127.0.0.1");
parse_ip_to_sockaddr( &x.generic, "127.0.0.1" );
fail_if(acl_includes(acl, &x), "Default deny accepted.");
fail_if( acl_includes( acl, &x ), "Default deny accepted." );
}
END_TEST
START_TEST(test_default_accept_rejects)
START_TEST( test_default_accept_rejects )
{
struct acl *acl = acl_create(0, NULL, 0);
union mysockaddr x;
struct acl * acl = acl_create( 0, NULL, 0 );
union mysockaddr x;
parse_ip_to_sockaddr(&x.generic, "127.0.0.1");
parse_ip_to_sockaddr( &x.generic, "127.0.0.1" );
fail_unless(acl_includes(acl, &x), "Default accept rejected.");
fail_unless( acl_includes( acl, &x ), "Default accept rejected." );
}
END_TEST
Suite * acl_suite(void)
Suite* acl_suite(void)
{
Suite *s = suite_create("acl");
TCase *tc_create = tcase_create("create");
TCase *tc_includes = tcase_create("includes");
TCase *tc_destroy = tcase_create("destroy");
Suite *s = suite_create("acl");
TCase *tc_create = tcase_create("create");
TCase *tc_includes = tcase_create("includes");
TCase *tc_destroy = tcase_create("destroy");
tcase_add_test(tc_create, test_null_acl);
tcase_add_test(tc_create, test_parses_single_line);
tcase_add_test(tc_includes, test_parses_multiple_lines);
tcase_add_test(tc_create, test_null_acl);
tcase_add_test(tc_create, test_parses_single_line);
tcase_add_test(tc_includes, test_parses_multiple_lines);
tcase_add_test(tc_includes, test_includes_single_address);
tcase_add_test(tc_includes,
test_includes_single_address_when_netmask_specified_ipv4);
tcase_add_test(tc_includes,
test_includes_single_address_when_netmask_specified_ipv6);
tcase_add_test(tc_includes, test_includes_single_address);
tcase_add_test(tc_includes, test_includes_single_address_when_netmask_specified_ipv4);
tcase_add_test(tc_includes, test_includes_single_address_when_netmask_specified_ipv6);
tcase_add_test(tc_includes,
test_includes_single_address_when_multiple_entries_exist);
tcase_add_test(tc_includes, test_includes_single_address_when_multiple_entries_exist);
tcase_add_test(tc_includes, test_doesnt_include_other_address);
tcase_add_test(tc_includes,
test_doesnt_include_other_address_when_netmask_specified);
tcase_add_test(tc_includes,
test_doesnt_include_other_address_when_multiple_entries_exist);
tcase_add_test(tc_includes, test_doesnt_include_other_address);
tcase_add_test(tc_includes, test_doesnt_include_other_address_when_netmask_specified);
tcase_add_test(tc_includes, test_doesnt_include_other_address_when_multiple_entries_exist);
tcase_add_test(tc_includes, test_default_deny_rejects);
tcase_add_test(tc_includes, test_default_accept_rejects);
tcase_add_test(tc_includes, test_default_deny_rejects);
tcase_add_test(tc_includes, test_default_accept_rejects);
tcase_add_test(tc_destroy, test_destroy_doesnt_crash);
tcase_add_test(tc_destroy, test_destroy_doesnt_crash);
suite_add_tcase(s, tc_create);
suite_add_tcase(s, tc_includes);
suite_add_tcase(s, tc_destroy);
suite_add_tcase(s, tc_create);
suite_add_tcase(s, tc_includes);
suite_add_tcase(s, tc_destroy);
return s;
return s;
}
int main(void)
{
#ifdef DEBUG
log_level = 0;
log_level = 0;
#else
log_level = 2;
log_level = 2;
#endif
int number_failed;
Suite *s = acl_suite();
SRunner *sr = srunner_create(s);
srunner_run_all(sr, CK_NORMAL);
log_level = 0;
number_failed = srunner_ntests_failed(sr);
srunner_free(sr);
return (number_failed == 0) ? 0 : 1;
int number_failed;
Suite *s = acl_suite();
SRunner *sr = srunner_create(s);
srunner_run_all(sr, CK_NORMAL);
log_level = 0;
number_failed = srunner_ntests_failed(sr);
srunner_free(sr);
return (number_failed == 0) ? 0 : 1;
}

View File

@@ -9,492 +9,492 @@
START_TEST(test_bit_set)
{
uint64_t num = 0;
bitfield_p bits = (bitfield_p) & num;
uint64_t num = 0;
bitfield_p bits = (bitfield_p) &num;
#define TEST_BIT_SET(bit, newvalue) \
bit_set(bits, (bit)); \
fail_unless(num == (newvalue), "num was %x instead of %x", num, (newvalue));
TEST_BIT_SET(0, 1);
TEST_BIT_SET(1, 3);
TEST_BIT_SET(2, 7);
TEST_BIT_SET(7, 0x87);
TEST_BIT_SET(63, 0x8000000000000087);
TEST_BIT_SET(0, 1);
TEST_BIT_SET(1, 3);
TEST_BIT_SET(2, 7);
TEST_BIT_SET(7, 0x87);
TEST_BIT_SET(63, 0x8000000000000087);
}
END_TEST
START_TEST(test_bit_clear)
{
uint64_t num = 0xffffffffffffffff;
bitfield_p bits = (bitfield_p) & num;
uint64_t num = 0xffffffffffffffff;
bitfield_p bits = (bitfield_p) &num;
#define TEST_BIT_CLEAR(bit, newvalue) \
bit_clear(bits, (bit)); \
fail_unless(num == (newvalue), "num was %x instead of %x", num, (newvalue));
TEST_BIT_CLEAR(0, 0xfffffffffffffffe);
TEST_BIT_CLEAR(1, 0xfffffffffffffffc);
TEST_BIT_CLEAR(2, 0xfffffffffffffff8);
TEST_BIT_CLEAR(7, 0xffffffffffffff78);
TEST_BIT_CLEAR(63, 0x7fffffffffffff78);
TEST_BIT_CLEAR(0, 0xfffffffffffffffe);
TEST_BIT_CLEAR(1, 0xfffffffffffffffc);
TEST_BIT_CLEAR(2, 0xfffffffffffffff8);
TEST_BIT_CLEAR(7, 0xffffffffffffff78);
TEST_BIT_CLEAR(63,0x7fffffffffffff78);
}
END_TEST
START_TEST(test_bit_tests)
{
uint64_t num = 0x5555555555555555;
bitfield_p bits = (bitfield_p) & num;
uint64_t num = 0x5555555555555555;
bitfield_p bits = (bitfield_p) &num;
fail_unless(bit_has_value(bits, 0, 1), "bit_has_value malfunction");
fail_unless(bit_has_value(bits, 1, 0), "bit_has_value malfunction");
fail_unless(bit_has_value(bits, 63, 0), "bit_has_value malfunction");
fail_unless(bit_is_set(bits, 0), "bit_is_set malfunction");
fail_unless(bit_is_clear(bits, 1), "bit_is_clear malfunction");
fail_unless(bit_is_set(bits, 62), "bit_is_set malfunction");
fail_unless(bit_is_clear(bits, 63), "bit_is_clear malfunction");
fail_unless(bit_has_value(bits, 0, 1), "bit_has_value malfunction");
fail_unless(bit_has_value(bits, 1, 0), "bit_has_value malfunction");
fail_unless(bit_has_value(bits, 63, 0), "bit_has_value malfunction");
fail_unless(bit_is_set(bits, 0), "bit_is_set malfunction");
fail_unless(bit_is_clear(bits, 1), "bit_is_clear malfunction");
fail_unless(bit_is_set(bits, 62), "bit_is_set malfunction");
fail_unless(bit_is_clear(bits, 63), "bit_is_clear malfunction");
}
END_TEST
START_TEST(test_bit_ranges)
{
bitfield_word_t buffer[BIT_WORDS_FOR_SIZE(4160)];
uint64_t *longs = (uint64_t *) buffer;
uint64_t i;
bitfield_word_t buffer[BIT_WORDS_FOR_SIZE(4160)];
uint64_t *longs = (uint64_t *) buffer;
uint64_t i;
memset(buffer, 0, 4160);
memset(buffer, 0, 4160);
for (i = 0; i < 64; i++) {
bit_set_range(buffer, i * 64, i);
fail_unless(longs[i] == (1ULL << i) - 1,
"longs[%ld] = %lx SHOULD BE %lx",
i, longs[i], (1ULL << i) - 1);
for (i=0; i<64; i++) {
bit_set_range(buffer, i*64, i);
fail_unless(
longs[i] == (1ULL<<i)-1,
"longs[%ld] = %lx SHOULD BE %lx",
i, longs[i], (1ULL<<i)-1
);
fail_unless(longs[i + 1] == 0, "bit_set_range overshot at i=%d",
i);
}
fail_unless(longs[i+1] == 0, "bit_set_range overshot at i=%d", i);
}
for (i = 0; i < 64; i++) {
bit_clear_range(buffer, i * 64, i);
fail_unless(longs[i] == 0, "bit_clear_range didn't work at i=%d",
i);
}
for (i=0; i<64; i++) {
bit_clear_range(buffer, i*64, i);
fail_unless(longs[i] == 0, "bit_clear_range didn't work at i=%d", i);
}
}
END_TEST
START_TEST(test_bit_runs)
{
bitfield_word_t buffer[BIT_WORDS_FOR_SIZE(256)];
int i, ptr = 0, runs[] = {
56, 97, 22, 12, 83, 1, 45, 80, 85, 51, 64, 40, 63, 67, 75, 64, 94,
81, 79, 62
};
bitfield_word_t buffer[BIT_WORDS_FOR_SIZE(256)];
int i, ptr=0, runs[] = {
56,97,22,12,83,1,45,80,85,51,64,40,63,67,75,64,94,81,79,62
};
memset(buffer, 0, 256);
memset(buffer,0,256);
for (i = 0; i < 20; i += 2) {
ptr += runs[i];
bit_set_range(buffer, ptr, runs[i + 1]);
ptr += runs[i + 1];
}
for (i=0; i < 20; i += 2) {
ptr += runs[i];
bit_set_range(buffer, ptr, runs[i+1]);
ptr += runs[i+1];
}
ptr = 0;
ptr = 0;
for (i = 0; i < 20; i += 1) {
int run = bit_run_count(buffer, ptr, 2048 - ptr, NULL);
fail_unless(run == runs[i],
"run %d should have been %d, was %d", i, runs[i], run);
ptr += runs[i];
}
for (i=0; i < 20; i += 1) {
int run = bit_run_count(buffer, ptr, 2048-ptr, NULL);
fail_unless(
run == runs[i],
"run %d should have been %d, was %d",
i, runs[i], run
);
ptr += runs[i];
}
}
END_TEST
START_TEST(test_bitset)
{
struct bitset *map;
uint64_t *num;
struct bitset * map;
uint64_t *num;
map = bitset_alloc(6400, 100);
num = (uint64_t *) map->bits;
map = bitset_alloc(6400, 100);
num = (uint64_t*) map->bits;
bitset_set_range(map, 0, 50);
ck_assert_int_eq(1, *num);
bitset_set_range(map, 99, 1);
ck_assert_int_eq(1, *num);
bitset_set_range(map, 100, 1);
ck_assert_int_eq(3, *num);
bitset_set_range(map, 0, 800);
ck_assert_int_eq(255, *num);
bitset_set_range(map, 1499, 2);
ck_assert_int_eq(0xc0ff, *num);
bitset_clear_range(map, 1499, 2);
ck_assert_int_eq(255, *num);
bitset_set_range(map,0,50);
ck_assert_int_eq(1, *num);
bitset_set_range(map,99,1);
ck_assert_int_eq(1, *num);
bitset_set_range(map,100,1);
ck_assert_int_eq(3, *num);
bitset_set_range(map,0,800);
ck_assert_int_eq(255, *num);
bitset_set_range(map,1499,2);
ck_assert_int_eq(0xc0ff, *num);
bitset_clear_range(map,1499,2);
ck_assert_int_eq(255, *num);
*num = 0;
bitset_set_range(map, 1499, 2);
bitset_clear_range(map, 1300, 200);
ck_assert_int_eq(0x8000, *num);
*num = 0;
bitset_set_range(map, 1499, 2);
bitset_clear_range(map, 1300, 200);
ck_assert_int_eq(0x8000, *num);
*num = 0;
bitset_set_range(map, 0, 6400);
ck_assert_int_eq(0xffffffffffffffff, *num);
bitset_clear_range(map, 3200, 400);
ck_assert_int_eq(0xfffffff0ffffffff, *num);
*num = 0;
bitset_set_range(map, 0, 6400);
ck_assert_int_eq(0xffffffffffffffff, *num);
bitset_clear_range(map, 3200, 400);
ck_assert_int_eq(0xfffffff0ffffffff, *num);
}
END_TEST
START_TEST(test_bitset_set)
START_TEST( test_bitset_set )
{
struct bitset *map;
uint64_t run;
struct bitset * map;
uint64_t run;
map = bitset_alloc(64, 1);
map = bitset_alloc(64, 1);
assert_bitset_is(map, 0x0000000000000000);
bitset_set(map);
assert_bitset_is(map, 0xffffffffffffffff);
bitset_free(map);
assert_bitset_is( map, 0x0000000000000000 );
bitset_set( map );
assert_bitset_is( map, 0xffffffffffffffff );
bitset_free( map );
map = bitset_alloc(6400, 100);
assert_bitset_is(map, 0x0000000000000000);
bitset_set(map);
assert_bitset_is(map, 0xffffffffffffffff);
bitset_free(map);
map = bitset_alloc( 6400, 100 );
assert_bitset_is( map, 0x0000000000000000 );
bitset_set( map );
assert_bitset_is( map, 0xffffffffffffffff );
bitset_free( map );
// Now do something large and representative
map = bitset_alloc(53687091200, 4096);
bitset_set(map);
// Now do something large and representative
map = bitset_alloc( 53687091200, 4096 );
bitset_set( map );
run = bitset_run_count(map, 0, 53687091200);
ck_assert_int_eq(run, 53687091200);
bitset_free(map);
run = bitset_run_count( map, 0, 53687091200 );
ck_assert_int_eq( run, 53687091200 );
bitset_free( map );
}
END_TEST
START_TEST(test_bitset_clear)
START_TEST( test_bitset_clear )
{
struct bitset *map;
uint64_t *num;
uint64_t run;
struct bitset * map;
uint64_t *num;
uint64_t run;
map = bitset_alloc(64, 1);
num = (uint64_t *) map->bits;
map = bitset_alloc(64, 1);
num = (uint64_t*) map->bits;
ck_assert_int_eq(0x0000000000000000, *num);
bitset_set(map);
bitset_clear(map);
ck_assert_int_eq(0x0000000000000000, *num);
ck_assert_int_eq( 0x0000000000000000, *num );
bitset_set( map );
bitset_clear( map );
ck_assert_int_eq( 0x0000000000000000, *num );
bitset_free(map);
bitset_free( map );
// Now do something large and representative
map = bitset_alloc(53687091200, 4096);
bitset_set(map);
bitset_clear(map);
run = bitset_run_count(map, 0, 53687091200);
ck_assert_int_eq(run, 53687091200);
bitset_free(map);
// Now do something large and representative
map = bitset_alloc( 53687091200, 4096 );
bitset_set( map );
bitset_clear( map );
run = bitset_run_count( map, 0, 53687091200 );
ck_assert_int_eq( run, 53687091200 );
bitset_free( map );
}
END_TEST
START_TEST(test_bitset_set_range)
START_TEST( test_bitset_set_range )
{
struct bitset *map = bitset_alloc(64, 1);
assert_bitset_is(map, 0x0000000000000000);
struct bitset* map = bitset_alloc( 64, 1 );
assert_bitset_is( map, 0x0000000000000000 );
bitset_set_range(map, 8, 8);
assert_bitset_is(map, 0x000000000000ff00);
bitset_set_range( map, 8, 8 );
assert_bitset_is( map, 0x000000000000ff00 );
bitset_clear(map);
assert_bitset_is(map, 0x0000000000000000);
bitset_set_range(map, 0, 0);
assert_bitset_is(map, 0x0000000000000000);
bitset_clear( map );
assert_bitset_is( map, 0x0000000000000000 );
bitset_set_range( map, 0, 0 );
assert_bitset_is( map, 0x0000000000000000 );
bitset_free(map);
bitset_free( map );
}
END_TEST
START_TEST(test_bitset_clear_range)
START_TEST( test_bitset_clear_range )
{
struct bitset *map = bitset_alloc(64, 1);
bitset_set(map);
assert_bitset_is(map, 0xffffffffffffffff);
struct bitset* map = bitset_alloc( 64, 1 );
bitset_set( map );
assert_bitset_is( map, 0xffffffffffffffff );
bitset_clear_range(map, 8, 8);
assert_bitset_is(map, 0xffffffffffff00ff);
bitset_clear_range( map, 8, 8 );
assert_bitset_is( map, 0xffffffffffff00ff );
bitset_set(map);
assert_bitset_is(map, 0xffffffffffffffff);
bitset_clear_range(map, 0, 0);
assert_bitset_is(map, 0xffffffffffffffff);
bitset_set( map );
assert_bitset_is( map, 0xffffffffffffffff );
bitset_clear_range( map, 0, 0 );
assert_bitset_is( map, 0xffffffffffffffff );
bitset_free(map);
bitset_free( map );
}
END_TEST
START_TEST(test_bitset_run_count)
START_TEST( test_bitset_run_count )
{
struct bitset *map = bitset_alloc(64, 1);
uint64_t run;
struct bitset* map = bitset_alloc( 64, 1 );
uint64_t run;
assert_bitset_is(map, 0x0000000000000000);
assert_bitset_is( map, 0x0000000000000000 );
run = bitset_run_count(map, 0, 64);
ck_assert_int_eq(64, run);
run = bitset_run_count( map, 0, 64 );
ck_assert_int_eq( 64, run );
bitset_set_range(map, 0, 32);
assert_bitset_is(map, 0x00000000ffffffff);
bitset_set_range( map, 0, 32 );
assert_bitset_is( map, 0x00000000ffffffff );
run = bitset_run_count(map, 0, 64);
ck_assert_int_eq(32, run);
run = bitset_run_count( map, 0, 64 );
ck_assert_int_eq( 32, run );
run = bitset_run_count(map, 0, 16);
ck_assert_int_eq(16, run);
run = bitset_run_count( map, 0, 16 );
ck_assert_int_eq( 16, run );
run = bitset_run_count(map, 16, 64);
ck_assert_int_eq(16, run);
run = bitset_run_count( map, 16, 64 );
ck_assert_int_eq( 16, run );
run = bitset_run_count(map, 31, 64);
ck_assert_int_eq(1, run);
run = bitset_run_count( map, 31, 64 );
ck_assert_int_eq( 1, run );
run = bitset_run_count(map, 32, 64);
ck_assert_int_eq(32, run);
run = bitset_run_count( map, 32, 64 );
ck_assert_int_eq( 32, run );
run = bitset_run_count(map, 32, 32);
ck_assert_int_eq(32, run);
run = bitset_run_count( map, 32, 32 );
ck_assert_int_eq( 32, run );
run = bitset_run_count(map, 32, 16);
ck_assert_int_eq(16, run);
run = bitset_run_count( map, 32, 16 );
ck_assert_int_eq( 16, run );
bitset_free(map);
bitset_free( map );
map = bitset_alloc(6400, 100);
assert_bitset_is(map, 0x0000000000000000);
map = bitset_alloc( 6400, 100 );
assert_bitset_is( map, 0x0000000000000000 );
run = bitset_run_count(map, 0, 6400);
ck_assert_int_eq(6400, run);
run = bitset_run_count( map, 0, 6400 );
ck_assert_int_eq( 6400, run );
bitset_set_range(map, 0, 3200);
bitset_set_range( map, 0, 3200 );
run = bitset_run_count(map, 0, 6400);
ck_assert_int_eq(3200, run);
run = bitset_run_count( map, 0, 6400 );
ck_assert_int_eq( 3200, run );
run = bitset_run_count(map, 1, 6400);
ck_assert_int_eq(3199, run);
run = bitset_run_count( map, 1, 6400 );
ck_assert_int_eq( 3199, run );
run = bitset_run_count(map, 3200, 6400);
ck_assert_int_eq(3200, run);
run = bitset_run_count( map, 3200, 6400 );
ck_assert_int_eq( 3200, run );
run = bitset_run_count(map, 6500, 6400);
ck_assert_int_eq(0, run);
bitset_free(map);
run = bitset_run_count( map, 6500, 6400 );
ck_assert_int_eq( 0, run );
bitset_free( map );
// Now do something large and representative
map = bitset_alloc(53687091200, 4096);
bitset_set(map);
run = bitset_run_count(map, 0, 53687091200);
ck_assert_int_eq(run, 53687091200);
// Now do something large and representative
map = bitset_alloc( 53687091200, 4096 );
bitset_set( map );
run = bitset_run_count( map, 0, 53687091200 );
ck_assert_int_eq( run, 53687091200 );
bitset_free(map);
bitset_free( map );
}
END_TEST
START_TEST(test_bitset_set_range_doesnt_push_to_stream)
START_TEST( test_bitset_set_range_doesnt_push_to_stream )
{
struct bitset *map = bitset_alloc(64, 1);
bitset_set_range(map, 0, 64);
ck_assert_int_eq(0, bitset_stream_size(map));
bitset_free(map);
struct bitset *map = bitset_alloc( 64, 1 );
bitset_set_range( map, 0, 64 );
ck_assert_int_eq( 0, bitset_stream_size( map ) );
bitset_free( map );
}
END_TEST
START_TEST(test_bitset_clear_range_doesnt_push_to_stream)
START_TEST( test_bitset_clear_range_doesnt_push_to_stream )
{
struct bitset *map = bitset_alloc(64, 1);
bitset_clear_range(map, 0, 64);
ck_assert_int_eq(0, bitset_stream_size(map));
bitset_free(map);
struct bitset *map = bitset_alloc( 64, 1 );
bitset_clear_range( map, 0, 64 );
ck_assert_int_eq( 0, bitset_stream_size( map ) );
bitset_free( map );
}
END_TEST
START_TEST(test_bitset_enable_stream)
{
struct bitset *map = bitset_alloc(64, 1);
struct bitset_stream_entry result;
memset(&result, 0, sizeof(result));
struct bitset *map = bitset_alloc( 64, 1 );
struct bitset_stream_entry result;
memset( &result, 0, sizeof( result ) );
bitset_enable_stream(map);
bitset_enable_stream( map );
ck_assert_int_eq(1, map->stream_enabled);
ck_assert_int_eq( 1, map->stream_enabled );
bitset_stream_dequeue(map, &result);
bitset_stream_dequeue( map, &result );
ck_assert_int_eq(BITSET_STREAM_ON, result.event);
ck_assert_int_eq(0, result.from);
ck_assert_int_eq(64, result.len);
ck_assert_int_eq( BITSET_STREAM_ON, result.event );
ck_assert_int_eq( 0, result.from );
ck_assert_int_eq( 64, result.len );
bitset_free(map);
bitset_free( map );
}
END_TEST
START_TEST(test_bitset_disable_stream)
{
struct bitset *map = bitset_alloc(64, 1);
struct bitset_stream_entry result;
memset(&result, 0, sizeof(result));
struct bitset *map = bitset_alloc( 64, 1 );
struct bitset_stream_entry result;
memset( &result, 0, sizeof( result ) );
bitset_enable_stream(map);
bitset_disable_stream(map);
bitset_enable_stream( map );
bitset_disable_stream( map );
ck_assert_int_eq(0, map->stream_enabled);
ck_assert_int_eq(2, bitset_stream_size(map));
ck_assert_int_eq( 0, map->stream_enabled );
ck_assert_int_eq( 2, bitset_stream_size( map ) );
bitset_stream_dequeue(map, NULL); // ON
bitset_stream_dequeue(map, &result); // OFF
bitset_stream_dequeue( map, NULL ); // ON
bitset_stream_dequeue( map, &result ); // OFF
ck_assert_int_eq(BITSET_STREAM_OFF, result.event);
ck_assert_int_eq(0, result.from);
ck_assert_int_eq(64, result.len);
ck_assert_int_eq( BITSET_STREAM_OFF, result.event );
ck_assert_int_eq( 0, result.from );
ck_assert_int_eq( 64, result.len );
bitset_free(map);
bitset_free( map );
}
END_TEST
START_TEST(test_bitset_stream_with_set_range)
{
struct bitset *map = bitset_alloc(64, 1);
struct bitset_stream_entry result;
memset(&result, 0, sizeof(result));
struct bitset *map = bitset_alloc( 64, 1 );
struct bitset_stream_entry result;
memset( &result, 0, sizeof( result ) );
bitset_enable_stream(map);
bitset_set_range(map, 0, 32);
bitset_enable_stream( map );
bitset_set_range( map, 0, 32 );
ck_assert_int_eq(2, bitset_stream_size(map));
ck_assert_int_eq( 2, bitset_stream_size( map ) );
bitset_stream_dequeue(map, NULL); // ON
bitset_stream_dequeue(map, &result); // SET
bitset_stream_dequeue( map, NULL ); // ON
bitset_stream_dequeue( map, &result ); // SET
ck_assert_int_eq(BITSET_STREAM_SET, result.event);
ck_assert_int_eq(0, result.from);
ck_assert_int_eq(32, result.len);
ck_assert_int_eq( BITSET_STREAM_SET, result.event );
ck_assert_int_eq( 0, result.from );
ck_assert_int_eq( 32, result.len );
bitset_free(map);
bitset_free( map );
}
END_TEST
START_TEST(test_bitset_stream_with_clear_range)
{
struct bitset *map = bitset_alloc(64, 1);
struct bitset_stream_entry result;
memset(&result, 0, sizeof(result));
struct bitset *map = bitset_alloc( 64, 1 );
struct bitset_stream_entry result;
memset( &result, 0, sizeof( result ) );
bitset_enable_stream(map);
bitset_clear_range(map, 0, 32);
ck_assert_int_eq(2, bitset_stream_size(map));
bitset_enable_stream( map );
bitset_clear_range( map, 0, 32 );
ck_assert_int_eq( 2, bitset_stream_size( map ) );
bitset_stream_dequeue(map, NULL); // ON
bitset_stream_dequeue(map, &result); // UNSET
bitset_stream_dequeue( map, NULL ); // ON
bitset_stream_dequeue( map, &result ); // UNSET
ck_assert_int_eq(BITSET_STREAM_UNSET, result.event);
ck_assert_int_eq(0, result.from);
ck_assert_int_eq(32, result.len);
ck_assert_int_eq( BITSET_STREAM_UNSET, result.event );
ck_assert_int_eq( 0, result.from );
ck_assert_int_eq( 32, result.len );
bitset_free(map);
bitset_free( map );
}
END_TEST
START_TEST(test_bitset_stream_size)
{
struct bitset *map = bitset_alloc(64, 1);
bitset_enable_stream(map);
bitset_set_range(map, 0, 32);
bitset_set_range(map, 16, 32);
bitset_set_range(map, 7, 16);
struct bitset *map = bitset_alloc( 64, 1 );
bitset_enable_stream( map );
bitset_set_range( map, 0, 32 );
bitset_set_range( map, 16, 32 );
bitset_set_range( map, 7, 16 );
bitset_clear_range(map, 0, 32);
bitset_clear_range(map, 16, 32);
bitset_clear_range(map, 48, 16);
bitset_disable_stream(map);
bitset_clear_range( map, 0, 32 );
bitset_clear_range( map, 16, 32 );
bitset_clear_range( map, 48, 16 );
bitset_disable_stream( map );
ck_assert_int_eq(8, bitset_stream_size(map));
ck_assert_int_eq( 8, bitset_stream_size( map ) );
bitset_free(map);
bitset_free( map );
}
END_TEST
START_TEST(test_bitset_stream_queued_bytes)
{
struct bitset *map = bitset_alloc(64, 1);
bitset_enable_stream(map);
bitset_set_range(map, 0, 32);
bitset_set_range(map, 16, 32);
bitset_set_range(map, 7, 16);
struct bitset *map = bitset_alloc( 64, 1 );
bitset_enable_stream( map );
bitset_set_range( map, 0, 32 );
bitset_set_range( map, 16, 32 );
bitset_set_range( map, 7, 16 );
bitset_clear_range(map, 0, 32);
bitset_clear_range(map, 16, 32);
bitset_clear_range(map, 48, 16);
bitset_clear_range(map, 0, 2);
bitset_disable_stream(map);
bitset_clear_range( map, 0, 32 );
bitset_clear_range( map, 16, 32 );
bitset_clear_range( map, 48, 16 );
bitset_clear_range( map, 0, 2 );
bitset_disable_stream( map );
ck_assert_int_eq(64,
bitset_stream_queued_bytes(map, BITSET_STREAM_ON));
ck_assert_int_eq(80,
bitset_stream_queued_bytes(map, BITSET_STREAM_SET));
ck_assert_int_eq(82,
bitset_stream_queued_bytes(map, BITSET_STREAM_UNSET));
ck_assert_int_eq(64,
bitset_stream_queued_bytes(map, BITSET_STREAM_OFF));
bitset_free(map);
ck_assert_int_eq( 64, bitset_stream_queued_bytes( map, BITSET_STREAM_ON ) );
ck_assert_int_eq( 80, bitset_stream_queued_bytes( map, BITSET_STREAM_SET ) );
ck_assert_int_eq( 82, bitset_stream_queued_bytes( map, BITSET_STREAM_UNSET ) );
ck_assert_int_eq( 64, bitset_stream_queued_bytes( map, BITSET_STREAM_OFF ) );
bitset_free( map );
}
END_TEST
Suite * bitset_suite(void)
Suite* bitset_suite(void)
{
Suite *s = suite_create("bitset");
Suite *s = suite_create("bitset");
TCase *tc_bit = tcase_create("bit");
tcase_add_test(tc_bit, test_bit_set);
tcase_add_test(tc_bit, test_bit_clear);
tcase_add_test(tc_bit, test_bit_tests);
tcase_add_test(tc_bit, test_bit_ranges);
tcase_add_test(tc_bit, test_bit_runs);
suite_add_tcase(s, tc_bit);
TCase *tc_bit = tcase_create("bit");
tcase_add_test(tc_bit, test_bit_set);
tcase_add_test(tc_bit, test_bit_clear);
tcase_add_test(tc_bit, test_bit_tests);
tcase_add_test(tc_bit, test_bit_ranges);
tcase_add_test(tc_bit, test_bit_runs);
suite_add_tcase(s, tc_bit);
TCase *tc_bitset = tcase_create("bitset");
tcase_add_test(tc_bitset, test_bitset);
tcase_add_test(tc_bitset, test_bitset_set);
tcase_add_test(tc_bitset, test_bitset_clear);
tcase_add_test(tc_bitset, test_bitset_run_count);
tcase_add_test(tc_bitset, test_bitset_set_range);
tcase_add_test(tc_bitset, test_bitset_clear_range);
tcase_add_test(tc_bitset, test_bitset_set_range_doesnt_push_to_stream);
tcase_add_test(tc_bitset,
test_bitset_clear_range_doesnt_push_to_stream);
suite_add_tcase(s, tc_bitset);
TCase *tc_bitset = tcase_create("bitset");
tcase_add_test(tc_bitset, test_bitset);
tcase_add_test(tc_bitset, test_bitset_set);
tcase_add_test(tc_bitset, test_bitset_clear);
tcase_add_test(tc_bitset, test_bitset_run_count);
tcase_add_test(tc_bitset, test_bitset_set_range);
tcase_add_test(tc_bitset, test_bitset_clear_range);
tcase_add_test(tc_bitset, test_bitset_set_range_doesnt_push_to_stream);
tcase_add_test(tc_bitset, test_bitset_clear_range_doesnt_push_to_stream);
suite_add_tcase(s, tc_bitset);
TCase *tc_bitset_stream = tcase_create("bitset_stream");
tcase_add_test(tc_bitset_stream, test_bitset_enable_stream);
tcase_add_test(tc_bitset_stream, test_bitset_disable_stream);
tcase_add_test(tc_bitset_stream, test_bitset_stream_with_set_range);
tcase_add_test(tc_bitset_stream, test_bitset_stream_with_clear_range);
tcase_add_test(tc_bitset_stream, test_bitset_stream_size);
tcase_add_test(tc_bitset_stream, test_bitset_stream_queued_bytes);
suite_add_tcase(s, tc_bitset_stream);
TCase *tc_bitset_stream = tcase_create("bitset_stream");
tcase_add_test(tc_bitset_stream, test_bitset_enable_stream);
tcase_add_test(tc_bitset_stream, test_bitset_disable_stream);
tcase_add_test(tc_bitset_stream, test_bitset_stream_with_set_range);
tcase_add_test(tc_bitset_stream, test_bitset_stream_with_clear_range);
tcase_add_test(tc_bitset_stream, test_bitset_stream_size);
tcase_add_test(tc_bitset_stream, test_bitset_stream_queued_bytes);
suite_add_tcase(s, tc_bitset_stream);
return s;
return s;
}
int main(void)
{
int number_failed;
Suite *s = bitset_suite();
SRunner *sr = srunner_create(s);
srunner_run_all(sr, CK_NORMAL);
number_failed = srunner_ntests_failed(sr);
srunner_free(sr);
return (number_failed == 0) ? 0 : 1;
int number_failed;
Suite *s = bitset_suite();
SRunner *sr = srunner_create(s);
srunner_run_all(sr, CK_NORMAL);
number_failed = srunner_ntests_failed(sr);
srunner_free(sr);
return (number_failed == 0) ? 0 : 1;
}

View File

@@ -9,109 +9,114 @@
#include <unistd.h>
struct server fake_server = { 0 };
struct server fake_server = {0};
#define FAKE_SERVER &fake_server
#define FAKE_SOCKET (42)
START_TEST(test_assigns_socket)
START_TEST( test_assigns_socket )
{
struct client *c;
struct client * c;
c = client_create(FAKE_SERVER, FAKE_SOCKET);
c = client_create( FAKE_SERVER, FAKE_SOCKET );
fail_unless(42 == c->socket, "Socket wasn't assigned.");
fail_unless( 42 == c->socket, "Socket wasn't assigned." );
}
END_TEST
START_TEST(test_assigns_server)
{
struct client *c;
/* can't predict the storage size so we can't allocate one on
* the stack
*/
c = client_create(FAKE_SERVER, FAKE_SOCKET);
fail_unless(FAKE_SERVER == c->serve, "Serve wasn't assigned.");
START_TEST( test_assigns_server )
{
struct client * c;
/* can't predict the storage size so we can't allocate one on
* the stack
*/
c = client_create( FAKE_SERVER, FAKE_SOCKET );
fail_unless( FAKE_SERVER == c->serve, "Serve wasn't assigned." );
}
END_TEST
START_TEST(test_opens_stop_signal)
START_TEST( test_opens_stop_signal )
{
struct client *c = client_create(FAKE_SERVER, FAKE_SOCKET);
struct client *c = client_create( FAKE_SERVER, FAKE_SOCKET );
client_signal_stop(c);
client_signal_stop( c );
fail_unless(1 == self_pipe_signal_clear(c->stop_signal),
"No signal was sent.");
fail_unless( 1 == self_pipe_signal_clear( c->stop_signal ),
"No signal was sent." );
}
END_TEST
int fd_is_closed(int);
START_TEST(test_closes_stop_signal)
START_TEST( test_closes_stop_signal )
{
struct client *c = client_create(FAKE_SERVER, FAKE_SOCKET);
int read_fd = c->stop_signal->read_fd;
int write_fd = c->stop_signal->write_fd;
struct client *c = client_create( FAKE_SERVER, FAKE_SOCKET );
int read_fd = c->stop_signal->read_fd;
int write_fd = c->stop_signal->write_fd;
client_destroy(c);
client_destroy( c );
fail_unless(fd_is_closed(read_fd), "Stop signal wasn't destroyed.");
fail_unless(fd_is_closed(write_fd), "Stop signal wasn't destroyed.");
fail_unless( fd_is_closed( read_fd ), "Stop signal wasn't destroyed." );
fail_unless( fd_is_closed( write_fd ), "Stop signal wasn't destroyed." );
}
END_TEST
START_TEST(test_read_request_quits_on_stop_signal)
START_TEST( test_read_request_quits_on_stop_signal )
{
int fds[2];
struct nbd_request nbdr;
pipe(fds);
struct client *c = client_create(FAKE_SERVER, fds[0]);
int fds[2];
struct nbd_request nbdr;
pipe( fds );
struct client *c = client_create( FAKE_SERVER, fds[0] );
client_signal_stop( c );
client_signal_stop(c);
int client_serve_request( struct client *);
fail_unless( 1 == client_serve_request( c ), "Didn't quit on stop." );
int client_serve_request(struct client *);
fail_unless(1 == client_serve_request(c), "Didn't quit on stop.");
close(fds[0]);
close(fds[1]);
close( fds[0] );
close( fds[1] );
}
END_TEST
Suite * client_suite(void)
Suite *client_suite(void)
{
Suite *s = suite_create("client");
Suite *s = suite_create("client");
TCase *tc_create = tcase_create("create");
TCase *tc_signal = tcase_create("signal");
TCase *tc_destroy = tcase_create("destroy");
TCase *tc_create = tcase_create("create");
TCase *tc_signal = tcase_create("signal");
TCase *tc_destroy = tcase_create("destroy");
tcase_add_test(tc_create, test_assigns_socket);
tcase_add_test(tc_create, test_assigns_server);
tcase_add_test(tc_create, test_assigns_socket);
tcase_add_test(tc_create, test_assigns_server);
tcase_add_test(tc_signal, test_opens_stop_signal);
tcase_add_test(tc_signal, test_read_request_quits_on_stop_signal);
tcase_add_test(tc_signal, test_opens_stop_signal);
tcase_add_test(tc_signal, test_read_request_quits_on_stop_signal);
tcase_add_test(tc_destroy, test_closes_stop_signal);
tcase_add_test( tc_destroy, test_closes_stop_signal );
suite_add_tcase(s, tc_create);
suite_add_tcase(s, tc_signal);
suite_add_tcase(s, tc_destroy);
suite_add_tcase(s, tc_create);
suite_add_tcase(s, tc_signal);
suite_add_tcase(s, tc_destroy);
return s;
return s;
}
int main(void)
{
int number_failed;
Suite *s = client_suite();
SRunner *sr = srunner_create(s);
srunner_run_all(sr, CK_NORMAL);
number_failed = srunner_ntests_failed(sr);
srunner_free(sr);
return (number_failed == 0) ? 0 : 1;
int number_failed;
Suite *s = client_suite();
SRunner *sr = srunner_create(s);
srunner_run_all(sr, CK_NORMAL);
number_failed = srunner_ntests_failed(sr);
srunner_free(sr);
return (number_failed == 0) ? 0 : 1;
}

View File

@@ -4,37 +4,39 @@
#include <check.h>
START_TEST(test_assigns_sock_name)
START_TEST( test_assigns_sock_name )
{
struct flexnbd flexnbd = { 0 };
char csn[] = "foobar";
struct flexnbd flexnbd = {0};
char csn[] = "foobar";
struct control *control = control_create(&flexnbd, csn);
struct control * control = control_create(&flexnbd, csn );
fail_unless(csn == control->socket_name, "Socket name not assigned");
fail_unless( csn == control->socket_name, "Socket name not assigned" );
}
END_TEST
Suite * control_suite(void)
Suite *control_suite(void)
{
Suite *s = suite_create("control");
Suite *s = suite_create("control");
TCase *tc_create = tcase_create("create");
TCase *tc_create = tcase_create("create");
tcase_add_test(tc_create, test_assigns_sock_name);
suite_add_tcase(s, tc_create);
tcase_add_test(tc_create, test_assigns_sock_name);
suite_add_tcase( s, tc_create );
return s;
return s;
}
int main(void)
{
int number_failed;
Suite *s = control_suite();
SRunner *sr = srunner_create(s);
srunner_run_all(sr, CK_NORMAL);
number_failed = srunner_ntests_failed(sr);
srunner_free(sr);
return (number_failed == 0) ? 0 : 1;
int number_failed;
Suite *s = control_suite();
SRunner *sr = srunner_create(s);
srunner_run_all(sr, CK_NORMAL);
number_failed = srunner_ntests_failed(sr);
srunner_free(sr);
return (number_failed == 0) ? 0 : 1;
}

View File

@@ -3,39 +3,42 @@
#include <check.h>
START_TEST(test_listening_assigns_sock)
START_TEST( test_listening_assigns_sock )
{
struct flexnbd *flexnbd = flexnbd_create_listening("127.0.0.1",
"4777",
"fakefile",
"fakesock",
0,
0,
NULL);
fail_if(NULL == flexnbd->control->socket_name, "No socket was copied");
struct flexnbd * flexnbd = flexnbd_create_listening(
"127.0.0.1",
"4777",
"fakefile",
"fakesock",
0,
0,
NULL );
fail_if( NULL == flexnbd->control->socket_name, "No socket was copied" );
}
END_TEST
Suite * flexnbd_suite(void)
Suite *flexnbd_suite(void)
{
Suite *s = suite_create("flexnbd");
Suite *s = suite_create("flexnbd");
TCase *tc_create = tcase_create("create");
TCase *tc_create = tcase_create("create");
tcase_add_test(tc_create, test_listening_assigns_sock);
suite_add_tcase(s, tc_create);
tcase_add_test(tc_create, test_listening_assigns_sock);
suite_add_tcase( s, tc_create );
return s;
return s;
}
int main(void)
{
int number_failed;
Suite *s = flexnbd_suite();
SRunner *sr = srunner_create(s);
srunner_run_all(sr, CK_NORMAL);
number_failed = srunner_ntests_failed(sr);
srunner_free(sr);
return (number_failed == 0) ? 0 : 1;
int number_failed;
Suite *s = flexnbd_suite();
SRunner *sr = srunner_create(s);
srunner_run_all(sr, CK_NORMAL);
number_failed = srunner_ntests_failed(sr);
srunner_free(sr);
return (number_failed == 0) ? 0 : 1;
}

View File

@@ -4,59 +4,59 @@
#include <check.h>
START_TEST(test_mutex_create)
START_TEST( test_mutex_create )
{
struct flexthread_mutex *ftm = flexthread_mutex_create();
NULLCHECK(ftm);
flexthread_mutex_destroy(ftm);
struct flexthread_mutex * ftm = flexthread_mutex_create();
NULLCHECK( ftm );
flexthread_mutex_destroy( ftm );
}
END_TEST
START_TEST(test_mutex_lock)
START_TEST( test_mutex_lock )
{
struct flexthread_mutex *ftm = flexthread_mutex_create();
struct flexthread_mutex * ftm = flexthread_mutex_create();
fail_if(flexthread_mutex_held(ftm),
"Flexthread_mutex is held before lock");
flexthread_mutex_lock(ftm);
fail_unless(flexthread_mutex_held(ftm),
"Flexthread_mutex is not held inside lock");
flexthread_mutex_unlock(ftm);
fail_if(flexthread_mutex_held(ftm),
"Flexthread_mutex is held after unlock");
fail_if( flexthread_mutex_held( ftm ), "Flexthread_mutex is held before lock" );
flexthread_mutex_lock( ftm );
fail_unless( flexthread_mutex_held( ftm ), "Flexthread_mutex is not held inside lock" );
flexthread_mutex_unlock( ftm );
fail_if( flexthread_mutex_held( ftm ), "Flexthread_mutex is held after unlock" );
flexthread_mutex_destroy(ftm);
flexthread_mutex_destroy( ftm );
}
END_TEST
Suite * flexthread_suite(void)
Suite* flexthread_suite(void)
{
Suite *s = suite_create("flexthread");
TCase *tc_create = tcase_create("create");
TCase *tc_destroy = tcase_create("destroy");
Suite *s = suite_create("flexthread");
TCase *tc_create = tcase_create("create");
TCase *tc_destroy = tcase_create("destroy");
tcase_add_test(tc_create, test_mutex_create);
tcase_add_test(tc_create, test_mutex_lock);
tcase_add_test( tc_create, test_mutex_create );
tcase_add_test( tc_create, test_mutex_lock );
suite_add_tcase(s, tc_create);
suite_add_tcase(s, tc_destroy);
suite_add_tcase(s, tc_create);
suite_add_tcase(s, tc_destroy);
return s;
return s;
}
int main(void)
{
#ifdef DEBUG
log_level = 0;
log_level = 0;
#else
log_level = 2;
log_level = 2;
#endif
int number_failed;
Suite *s = flexthread_suite();
SRunner *sr = srunner_create(s);
srunner_run_all(sr, CK_NORMAL);
log_level = 0;
number_failed = srunner_ntests_failed(sr);
srunner_free(sr);
return (number_failed == 0) ? 0 : 1;
int number_failed;
Suite *s = flexthread_suite();
SRunner *sr = srunner_create(s);
srunner_run_all(sr, CK_NORMAL);
log_level = 0;
number_failed = srunner_ntests_failed(sr);
srunner_free(sr);
return (number_failed == 0) ? 0 : 1;
}

Some files were not shown because too many files have changed in this diff Show More