Restructure so messages and code specific to NETLINK_ROUTE are in one file

This commit is contained in:
Brian Candler
2011-04-30 22:39:25 +01:00
parent 3d4be4cd58
commit 8f453c5dc9
6 changed files with 391 additions and 346 deletions

View File

@@ -5,27 +5,6 @@ module Netlink
EMPTY_STRING = "".freeze #:nodoc:
EMPTY_ARRAY = [].freeze #:nodoc:
# struct rtnl_link_stats / rtnl_link_stats64
LinkStats = Struct.new :rx_packets, :tx_packets,
:rx_bytes, :tx_bytes,
:rx_errors, :tx_errors,
:rx_dropped, :tx_dropped,
:multicast, :collisions,
:rx_length_errors, :rx_over_errors,
:rx_crc_errors, :rx_frame_errors,
:rx_fifo_errors, :rx_missed_errors,
:tx_aborted_errorsr, :tx_carrier_errors,
:tx_fifo_errors, :tx_heartbeat_errors,
:tx_window_errors,
:rx_compressed, :tx_compressed
# struct rta_cacheinfo
RTACacheInfo = Struct.new :clntref, :lastuse, :expires, :error, :used, :id, :ts, :tsage
# struct ifa_cacheinfo
IFACacheInfo = Struct.new :prefered, :valid, :cstamp, :tstamp
# struct ifmap
IFMap = Struct.new :mem_start, :mem_end, :base_addr, :irq, :dma, :port
# This is the base class from which all Netlink messages are derived.
# To define a new Netlink message, make a subclass and then call the
# "field" metaprogramming method to define the parts of the message, in
@@ -45,7 +24,7 @@ module Netlink
# msg2 = Foo.new(:qux => 999) # error: no method "qux="
# msg2 = Foo.new(msg) # cloning an existing message
#
# Use RtattrMessage for messages which are followed by variable rtattrs.
# Use RtattrMessage instead for messages which are followed by variable rtattrs.
class Message
TYPE_INFO = {} #:nodoc
@@ -75,39 +54,6 @@ module Netlink
define_type :binary, :pattern => "a*", :default => EMPTY_STRING
define_type :cstring, :pattern => "Z*", :default => EMPTY_STRING
define_type :linkstats32,
:pack => lambda { |val,obj| val.to_a.pack("L23") },
:unpack => lambda { |str,obj| LinkStats.new(*(str.unpack("L23"))) }
define_type :linkstats64,
:pack => lambda { |val,obj| val.to_a.pack("Q23") },
:unpack => lambda { |str,obj| LinkStats.new(*(str.unpack("Q23"))) }
define_type :rta_cacheinfo,
:pack => lambda { |val,obj| val.to_a.pack("L*") },
:unpack => lambda { |str,obj| RTACacheInfo.new(*(str.unpack("L*"))) }
define_type :ifa_cacheinfo,
:pack => lambda { |val,obj| val.to_a.pack("L*") },
:unpack => lambda { |str,obj| IFACacheInfo.new(*(str.unpack("L*"))) }
IFMAP_PACK = "QQQSCC".freeze #:nodoc:
define_type :ifmap,
:pack => lambda { |val,obj| val.to_a.pack(IFMAP_PACK) },
:unpack => lambda { |str,obj| IFMap.new(*(str.unpack(IFMAP_PACK))) }
METRIC_PACK = "SSL".freeze #:nodoc:
METRIC_SIZE = [0,0,0].pack(METRIC_PACK).bytesize #:nodoc:
define_type :metrics,
:pack => lambda { |metrics,obj|
metrics.map { |code,val| [METRIC_SIZE,code,val].pack(METRIC_PACK) }.join
},
:unpack => lambda { |str,obj|
res = {} # in kernel the dst.metrics structure is array of u32
RtattrMessage.unpack_rtattr(str) { |code,val| res[code] = val.unpack("L").first }
res
}
# L2 addresses are presented as ASCII hex. You may optionally include
# colons, hyphens or dots.
# Link.new(:address => "00:11:22:33:44:55") # this is OK
@@ -351,84 +297,4 @@ module Netlink
end
end
end
class Link < RtattrMessage
code RTM_NEWLINK, RTM_DELLINK, RTM_GETLINK
field :family, :uchar # Socket::AF_*
field :pad, :uchar
field :type, :ushort # ARPHRD_*
field :index, :int
field :flags, :uint # IFF_*
field :change, :uint, :default=>0xffffffff
rtattr :address, IFLA_ADDRESS, :l2addr
rtattr :broadcast, IFLA_BROADCAST, :l2addr
rtattr :ifname, IFLA_IFNAME, :cstring
rtattr :mtu, IFLA_MTU, :uint32
rtattr :link, IFLA_LINK, :int32
rtattr :qdisc, IFLA_QDISC, :cstring
rtattr :stats32, IFLA_STATS, :linkstats32
rtattr :cost, IFLA_COST
rtattr :master, IFLA_MASTER, :uint32
rtattr :wireless, IFLA_WIRELESS
rtattr :protinfo, IFLA_PROTINFO, :uchar
rtattr :txqlen, IFLA_TXQLEN, :uint32
rtattr :map, IFLA_MAP, :ifmap
rtattr :weight, IFLA_WEIGHT, :uint32
rtattr :operstate, IFLA_OPERSTATE, :uchar
rtattr :linkmode, IFLA_LINKMODE, :uchar
rtattr :linkinfo, IFLA_LINKINFO # nested
rtattr :net_ns_pid, IFLA_NET_NS_PID, :uint32
rtattr :ifalias, IFLA_IFALIAS, :cstring
rtattr :num_vf, IFLA_NUM_VF, :uint32
rtattr :vfinfo_list, IFLA_VFINFO_LIST
rtattr :stats64, IFLA_STATS64, :linkstats64
rtattr :vf_ports, IFLA_VF_PORTS
rtattr :port_self, IFLA_PORT_SELF
# Return the best stats available (64bit or 32bit)
def stats
stats64 || stats32
end
end
class Addr < RtattrMessage
code RTM_NEWADDR, RTM_DELADDR, RTM_GETADDR
field :family, :uchar # Socket::AF_*
field :prefixlen, :uchar
field :flags, :uchar # IFA_F_*
field :scope, :uchar # RT_SCOPE_*
field :index, :int
rtattr :address, IFA_ADDRESS, :l3addr
rtattr :local, IFA_LOCAL, :l3addr
rtattr :label, IFA_LABEL, :cstring
rtattr :broadcast, IFA_BROADCAST, :l3addr
rtattr :anycast, IFA_ANYCAST, :l3addr
rtattr :cacheinfo, IFA_CACHEINFO, :ifa_cacheinfo
rtattr :multicast, IFA_MULTICAST, :l3addr
end
class Route < RtattrMessage
code RTM_NEWROUTE, RTM_DELROUTE, RTM_GETROUTE
field :family, :uchar # Socket::AF_*
field :dst_len, :uchar
field :src_len, :uchar
field :tos, :uchar
field :table, :uchar # table id or RT_TABLE_*
field :protocol, :uchar # RTPROT_*
field :scope, :uchar # RT_SCOPE_*
field :type, :uchar # RTN_*
field :flags, :uint # RTM_F_*
rtattr :dst, RTA_DST, :l3addr
rtattr :src, RTA_SRC, :l3addr
rtattr :iif, RTA_IIF, :uint32
rtattr :oif, RTA_OIF, :uint32
rtattr :gateway, RTA_GATEWAY, :l3addr
rtattr :priority, RTA_PRIORITY, :uint32
rtattr :prefsrc, RTA_PREFSRC, :l3addr
rtattr :metrics, RTA_METRICS, :metrics
rtattr :multipath, RTA_MULTIPATH
rtattr :flow, RTA_FLOW
rtattr :cacheinfo, RTA_CACHEINFO, :rta_cacheinfo
rtattr :table2, RTA_TABLE, :uint32 # NOTE: table in two places!
end
end

View File

@@ -3,8 +3,11 @@ require 'netlink/constants'
require 'netlink/message'
module Netlink
# NLSocket provides low-level sending and receiving of messages across
# a netlink socket, adding headers to sent messages and parsing
# received messages.
class NLSocket
DEFAULT_TIMEOUT = 2
DEFAULT_TIMEOUT = 5
SOCKADDR_PACK = "SSLL".freeze #:nodoc:
@@ -18,28 +21,23 @@ module Netlink
# Check the sockaddr on a received message. Raises an error if the AF
# is not AF_NETLINK or the PID is not 0 (this is important for security)
def self.parse_sockaddr(str)
def self.check_sockaddr(str)
af, pad, pid, groups = str.unpack(SOCKADDR_PACK)
raise "Bad AF #{af}!" if af != Socket::AF_NETLINK
raise "Bad PID #{pid}!" if pid != 0
end
attr_accessor :socket
attr_accessor :seq
attr_accessor :pid
attr_accessor :socket # the underlying Socket
attr_accessor :seq # the last sequence number used
attr_accessor :pid # default pid to include in message headers
attr_accessor :timeout # default timeout when receiving message
# Create a new Netlink socket. Pass in chosen protocol:
# :protocol => Netlink::NETLINK_ARPD
# :protocol => Netlink::NETLINK_FIREWALL
# :protocol => Netlink::NETLINK_IP6_FW
# :protocol => Netlink::NETLINK_NFLOG
# :protocol => Netlink::NETLINK_ROUTE
# :protocol => Netlink::NETLINK_ROUTE6
# :protocol => Netlink::NETLINK_TAPBASE
# :protocol => Netlink::NETLINK_TCPDIAG
# :protocol => Netlink::NETLINK_XFRM
# Other options:
# :groups => N (subscribe to multicastgroups, default to 0)
# etc. Other options:
# :groups => N (subscribe to multicast groups, default to 0)
# :seq => N (override initial sequence number)
# :pid => N (override PID)
# :timeout => N (seconds, default to DEFAULT_TIMEOUT. Pass nil for no timeout)
@@ -55,16 +53,25 @@ module Netlink
@timeout = opt.has_key?(:timeout) ? opt[:timeout] : DEFAULT_TIMEOUT
end
# Send a Netlink::Message object over the socket
# obj:: the object to send (responds to #to_s)
# Generate the next sequence number
def next_seq
@seq = (@seq + 1) & 0xffffffff
end
# Add a header and send a single message over the socket.
# type:: the message type code
# msg:: the message to send (without header)
# flags:: message header flags, default NLM_F_REQUEST
# sockaddr:: destination sockaddr, defaults to pid=0 and groups=0
# seq:: sequence number, defaults to bump internal sequence
# pid:: pid, defaults to $$
# vflags:: sendmsg flags, defaults to 0
def send_request(type, obj, flags=NLM_F_REQUEST, sockaddr=SOCKADDR_DEFAULT, seq=(@seq += 1), pid=@pid, vflags=0, controls=[])
# Normally 'msg' would be an instance of a Netlink::Message subclass,
# although in fact any object which respond to #to_s will do (if you
# want to pack the message body yourself).
def send_request(type, msg, flags=NLM_F_REQUEST, sockaddr=SOCKADDR_DEFAULT, seq=next_seq, pid=@pid, vflags=0, controls=[])
@socket.sendmsg(
build_message(type, obj, flags, seq, pid),
build_message(type, msg, flags, seq, pid),
vflags, sockaddr, *controls
)
end
@@ -73,7 +80,7 @@ module Netlink
NLMSGHDR_SIZE = [0,0,0,0,0].pack(NLMSGHDR_PACK).bytesize # :nodoc:
# Build a message comprising header+body. It is not padded at the end.
def build_message(type, body, flags=NLM_F_REQUEST, seq=(@seq += 1), pid=@pid)
def build_message(type, body, flags=NLM_F_REQUEST, seq=next_seq, pid=@pid)
body = body.to_s
header = [
body.bytesize + NLMSGHDR_SIZE,
@@ -86,38 +93,44 @@ module Netlink
# Send multiple Netlink::Message objects in a single message. They
# need to share the same type and flags, and will be sent with sequential
# sequence nos.
def send_requests(type, objs, flags=NLM_F_REQUEST, pid=@pid)
objs.each_with_index do |obj, index|
if index < objs.size - 1
data << build_message(type, obj, flags|NLM_F_MULTI, @seq+=1, pid)
def send_requests(type, msgs, flags=NLM_F_REQUEST, pid=@pid)
msgs.each_with_index do |msg, index|
if index < msgs.size - 1
data << build_message(type, msg, flags|NLM_F_MULTI, next_seq, pid)
Message.pad(data)
else
data << build_message(type, obj, flags, @seq+=1, pid)
data << build_message(type, msg, flags, next_seq, pid)
end
end
end
# Discard all waiting messages
def flush
def drain
while select([@socket], nil, nil, 0)
@socket.recvmsg
mesg, sender, rflags, controls = @socket.recvmsg
raise EOFError unless mesg
end
end
# Loop receiving responses until Netlink::Message::Done, and yielding
# the objects found. Also filters so that only expected pid and seq
# are accepted.
# Loop receiving responses until a DONE message is received (or you
# break out of the loop, or a timeout exception occurs). Filters out
# messages with unexpected pid and seq. If you pass an expected_type then
# messages other than this type will be discarded too.
#
# Yields Netlink::Message objects, or if no block is given, returns an
# array of those objects. If you provide a junk_handler then it will be
# called for discarded messages.
#
# (Compare: rtnl_dump_filter_l in lib/libnetlink.c)
def receive_until_done(expect_type=nil, timeout=@timeout, junk_handler=nil, &blk) #:yields: obj
def receive_until_done(expected_type=nil, timeout=@timeout, junk_handler=nil, &blk) #:yields: msg
res = []
blk ||= lambda { |obj| res << obj }
junk_handler ||= lambda { |type, flags, seq, pid, obj|
warn "Discarding junk message (#{type}) #{obj}" } if $VERBOSE
blk ||= lambda { |msg| res << msg }
junk_handler ||= lambda { |type, flags, seq, pid, msg|
warn "Discarding junk message (#{type}) #{msg}" } if $VERBOSE
loop do
receive_response(timeout) do |type, flags, seq, pid, obj|
receive_response(timeout) do |type, flags, seq, pid, msg|
if pid != @pid || seq != @seq
junk_handler[type, flags, seq, pid, obj] if junk_handler
junk_handler[type, flags, seq, pid, msg] if junk_handler
next
end
case type
@@ -126,41 +139,44 @@ module Netlink
when NLMSG_ERROR
raise "Netlink Error received"
end
if expect_type && type != expect_type
junk_handler[type, flags, seq, pid, obj] if junk_handler
if expected_type && type != expected_type
junk_handler[type, flags, seq, pid, msg] if junk_handler
next
end
blk.call(obj) if obj
blk.call(msg) if msg
end
end
end
# Receive one datagram from kernel. If a block is given, then yield
# Receive one datagram from kernel. Yield header fields plus
# Netlink::Message objects (maybe multiple times if the datagram
# includes multiple netlink messages).
# includes multiple netlink messages). Raise an exception if no
# datagram received within the specified or default timeout period;
# pass nil for infinite timeout.
#
# receive_response { |msg| p msg }
# receive_response { |type, flags, seq, pid, msg| p msg }
def receive_response(timeout=@timeout, &blk) # :yields: type, flags, seq, pid, Message
if select([@socket], nil, nil, timeout)
mesg, sender, rflags, controls = @socket.recvmsg
raise EOFError unless mesg
NLSocket.parse_sockaddr(sender.to_sockaddr)
NLSocket.check_sockaddr(sender.to_sockaddr)
parse_yield(mesg, &blk)
else
raise "Timeout"
end
end
# Parse message(s) in a string buffer and yield message object, flags,
# seq and pid
def parse_yield(mesg) # :yields: type, flags, seq, pid, Message
# Parse netlink packet in a string buffer. Yield header fields plus
# a Netlink::Message object (or nil) for each message.
def parse_yield(mesg) # :yields: type, flags, seq, pid, Message-or-nil
dechunk(mesg) do |h_type, h_flags, h_seq, h_pid, data|
klass = Message::CODE_TO_MESSAGE[h_type]
yield h_type, h_flags, h_seq, h_pid, klass && klass.parse(data)
end
end
# Take message(s) in a string buffer and yield fields in turn
# Parse netlink packet in a string buffer. Yield header and body
# components for each message in turn.
def dechunk(mesg) # :yields: type, flags, seq, pid, data
ptr = 0
while ptr < mesg.bytesize

297
lib/netlink/route.rb Normal file
View File

@@ -0,0 +1,297 @@
# This file implements the messages and methods for the NETLINK_ROUTE protocol
require 'netlink/nlsocket'
require 'netlink/message'
module Netlink
# struct rtnl_link_stats / rtnl_link_stats64
LinkStats = Struct.new :rx_packets, :tx_packets,
:rx_bytes, :tx_bytes,
:rx_errors, :tx_errors,
:rx_dropped, :tx_dropped,
:multicast, :collisions,
:rx_length_errors, :rx_over_errors,
:rx_crc_errors, :rx_frame_errors,
:rx_fifo_errors, :rx_missed_errors,
:tx_aborted_errorsr, :tx_carrier_errors,
:tx_fifo_errors, :tx_heartbeat_errors,
:tx_window_errors,
:rx_compressed, :tx_compressed
# struct rta_cacheinfo
RTACacheInfo = Struct.new :clntref, :lastuse, :expires, :error, :used, :id, :ts, :tsage
# struct ifa_cacheinfo
IFACacheInfo = Struct.new :prefered, :valid, :cstamp, :tstamp
# struct ifmap
IFMap = Struct.new :mem_start, :mem_end, :base_addr, :irq, :dma, :port
# struct ifinfomsg
class Link < RtattrMessage
code RTM_NEWLINK, RTM_DELLINK, RTM_GETLINK
IFMAP_PACK = "QQQSCC".freeze #:nodoc:
define_type :ifmap,
:pack => lambda { |val,obj| val.to_a.pack(IFMAP_PACK) },
:unpack => lambda { |str,obj| IFMap.new(*(str.unpack(IFMAP_PACK))) }
define_type :linkstats32,
:pack => lambda { |val,obj| val.to_a.pack("L23") },
:unpack => lambda { |str,obj| LinkStats.new(*(str.unpack("L23"))) }
define_type :linkstats64,
:pack => lambda { |val,obj| val.to_a.pack("Q23") },
:unpack => lambda { |str,obj| LinkStats.new(*(str.unpack("Q23"))) }
field :family, :uchar # Socket::AF_*
field :pad, :uchar
field :type, :ushort # ARPHRD_*
field :index, :int
field :flags, :uint # IFF_*
field :change, :uint, :default=>0xffffffff
rtattr :address, IFLA_ADDRESS, :l2addr
rtattr :broadcast, IFLA_BROADCAST, :l2addr
rtattr :ifname, IFLA_IFNAME, :cstring
rtattr :mtu, IFLA_MTU, :uint32
rtattr :link, IFLA_LINK, :int32
rtattr :qdisc, IFLA_QDISC, :cstring
rtattr :stats32, IFLA_STATS, :linkstats32
rtattr :cost, IFLA_COST
rtattr :master, IFLA_MASTER, :uint32
rtattr :wireless, IFLA_WIRELESS
rtattr :protinfo, IFLA_PROTINFO, :uchar
rtattr :txqlen, IFLA_TXQLEN, :uint32
rtattr :map, IFLA_MAP, :ifmap
rtattr :weight, IFLA_WEIGHT, :uint32
rtattr :operstate, IFLA_OPERSTATE, :uchar
rtattr :linkmode, IFLA_LINKMODE, :uchar
rtattr :linkinfo, IFLA_LINKINFO # nested
rtattr :net_ns_pid, IFLA_NET_NS_PID, :uint32
rtattr :ifalias, IFLA_IFALIAS, :cstring
rtattr :num_vf, IFLA_NUM_VF, :uint32
rtattr :vfinfo_list, IFLA_VFINFO_LIST
rtattr :stats64, IFLA_STATS64, :linkstats64
rtattr :vf_ports, IFLA_VF_PORTS
rtattr :port_self, IFLA_PORT_SELF
# Return the best stats available (64bit or 32bit)
def stats
stats64 || stats32
end
end
# struct ifaddrmsg
class Addr < RtattrMessage
code RTM_NEWADDR, RTM_DELADDR, RTM_GETADDR
define_type :ifa_cacheinfo,
:pack => lambda { |val,obj| val.to_a.pack("L*") },
:unpack => lambda { |str,obj| IFACacheInfo.new(*(str.unpack("L*"))) }
field :family, :uchar # Socket::AF_*
field :prefixlen, :uchar
field :flags, :uchar # IFA_F_*
field :scope, :uchar # RT_SCOPE_*
field :index, :int
rtattr :address, IFA_ADDRESS, :l3addr
rtattr :local, IFA_LOCAL, :l3addr
rtattr :label, IFA_LABEL, :cstring
rtattr :broadcast, IFA_BROADCAST, :l3addr
rtattr :anycast, IFA_ANYCAST, :l3addr
rtattr :cacheinfo, IFA_CACHEINFO, :ifa_cacheinfo
rtattr :multicast, IFA_MULTICAST, :l3addr
end
# struct rtmsg
class Route < RtattrMessage
code RTM_NEWROUTE, RTM_DELROUTE, RTM_GETROUTE
define_type :rta_cacheinfo,
:pack => lambda { |val,obj| val.to_a.pack("L*") },
:unpack => lambda { |str,obj| RTACacheInfo.new(*(str.unpack("L*"))) }
# Route metrics are themselves packed using the rtattr format.
# In the kernel, the dst.metrics structure is an array of u32.
METRIC_PACK = "SSL".freeze #:nodoc:
METRIC_SIZE = [0,0,0].pack(METRIC_PACK).bytesize #:nodoc:
define_type :rtmetrics,
:pack => lambda { |metrics,obj|
metrics.map { |code,val| [METRIC_SIZE,code,val].pack(METRIC_PACK) }.join
},
:unpack => lambda { |str,obj|
res = {} # in kernel the dst.metrics structure is array of u32
RtattrMessage.unpack_rtattr(str) { |code,val| res[code] = val.unpack("L").first }
res
}
field :family, :uchar # Socket::AF_*
field :dst_len, :uchar
field :src_len, :uchar
field :tos, :uchar
field :table, :uchar # table id or RT_TABLE_*
field :protocol, :uchar # RTPROT_*
field :scope, :uchar # RT_SCOPE_*
field :type, :uchar # RTN_*
field :flags, :uint # RTM_F_*
rtattr :dst, RTA_DST, :l3addr
rtattr :src, RTA_SRC, :l3addr
rtattr :iif, RTA_IIF, :uint32
rtattr :oif, RTA_OIF, :uint32
rtattr :gateway, RTA_GATEWAY, :l3addr
rtattr :priority, RTA_PRIORITY, :uint32
rtattr :prefsrc, RTA_PREFSRC, :l3addr
rtattr :metrics, RTA_METRICS, :rtmetrics
rtattr :multipath, RTA_MULTIPATH
rtattr :flow, RTA_FLOW
rtattr :cacheinfo, RTA_CACHEINFO, :rta_cacheinfo
rtattr :table2, RTA_TABLE, :uint32 # NOTE: table in two places!
end
# This is the medium and high-level API using a NETLINK_ROUTE protocol socket
class RTSocket < NLSocket
def initialize(opt={})
super(opt.merge(:protocol => Netlink::NETLINK_ROUTE))
clear_cache
end
# Download a list of links (interfaces). Either returns an array of
# Netlink::Link objects, or yields them to the supplied block.
#
# res = nl.link_list
# p res
# [#<Netlink::Link {:family=>0, :pad=>0, :type=>772, :index=>1,
# :flags=>65609, :change=>0, :ifname=>"lo", :txqlen=>0, :operstate=>0,
# :linkmode=>0, :mtu=>16436, :qdisc=>"noqueue", :map=>"...",
# :address=>"\x00\x00\x00\x00\x00\x00", :broadcast=>"\x00\x00\x00\x00\x00\x00",
# :stats=>#<struct Netlink::LinkStats rx_packets=22, ...>,
# :stats64=>#<struct Netlink::LinkStats rx_packets=22, ...>}>, ...]
def read_links(opt=nil, &blk)
send_request RTM_GETLINK, Link.new(opt),
NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST
receive_until_done(RTM_NEWLINK, &blk)
end
# Download a list of routes. Either returns an array of
# Netlink::Route objects, or yields them to the supplied block.
#
# A hash of kernel options may be supplied, but you might also have
# to perform your own filtering. e.g.
# rt.read_routes(:family=>Socket::AF_INET) # works
# rt.read_routes(:protocol=>Netlink::RTPROT_STATIC) # ignored
#
# res = nl.routes(:family => Socket::AF_INET)
# p res
# [#<Netlink::Route {:family=>2, :dst_len=>32, :src_len=>0, :tos=>0,
# :table=>255, :protocol=>2, :scope=>253, :type=>3, :flags=>0, :table2=>255,
# :dst=>#<IPAddr: IPv4:127.255.255.255/255.255.255.255>,
# :prefsrc=>#<IPAddr: IPv4:127.0.0.1/255.255.255.255>, :oif=>1}>, ...]
#
# Note that not all attributes will always be present. In particular,
# a defaultroute (dst_len=0) misses out the dst address completely:
#
# [#<Netlink::Route {:family=>2, :dst_len=>0, :src_len=>0, :tos=>0,
# :table=>254, :protocol=>4, :scope=>0, :type=>1, :flags=>0, :table2=>254,
# :gateway=>#<IPAddr: IPv4:10.69.255.253/255.255.255.255>, :oif=>2}>, ...]
def read_routes(opt=nil, &blk)
send_request RTM_GETROUTE, Route.new(opt),
NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST
receive_until_done(RTM_NEWROUTE, &blk)
end
# Download a list of link addresses. Either returns an array of
# Netlink::Addr objects, or yields them to the supplied block.
# You will need to use the 'index' to cross reference to the interface.
#
# A hash of kernel options may be supplied, but likely only :family
# is honoured.
#
# res = nl.addrs(:family => Socket::AF_INET)
# p res
# [#<Netlink::Addr {:family=>2, :prefixlen=>8, :flags=>128, :scope=>254,
# :index=>1, :address=>#<IPAddr: IPv4:127.0.0.1/255.255.255.255>,
# :local=>#<IPAddr: IPv4:127.0.0.1/255.255.255.255>, :label=>"lo"}>, ...]
def read_addrs(opt=nil, &blk)
send_request RTM_GETADDR, Addr.new(opt),
NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST
receive_until_done(RTM_NEWADDR, &blk)
end
# Download a list of addresses, grouped as {index=>[addr,addr], index=>[addr,addr]}
def read_addrs_by_ifindex(opt=nil)
res = read_addrs(opt).group_by { |obj| obj.index }
res.default = [].freeze
res
end
# Clear the memoization cache
def clear_cache
@links = nil
@link = nil
@addrs = nil
@routes = nil
end
# Return the memoized interface table as a flat array, suitable for
# iteration. e.g.
# rt.links.each { |link| puts link.ifname }
def links
@links ||= read_links
end
# Return the memoized interface table, keyed by both ifname and ifindex. e.g.
# puts rt.link["eth0"].index
# puts rt.link[1].ifname
def link
@link ||= (
h = {}
links.each { |link| h[link.index] = h[link.ifname] = link }
h
)
end
# Return the memoized address table, keyed by interface name and
# address family, containing an array of addresses for each
# interface/family combination. i.e.
#
# # {ifname=>{family=>[addr,addr,...], ...}, ...}
# puts rt.addrs["eth0"][Socket::AF_INET][0].address
#
# If there are no addresses for a particular family then it will
# return a (frozen) empty array, to make iteration eaiser.
def addrs
@addrs ||= (
h = {}
links.each do |link|
h[link.ifname] = {}
end
read_addrs.each do |addr|
ifname = link[addr.index].ifname
h[ifname] ||= Hash.new(EMPTY_ARRAY)
(h[ifname][addr.family] ||= []) << addr
end
h
)
end
# Return the memoized route table, keyed by address family, containing
# an array of routes for each address family. i.e.
# family combination. i.e.
#
# # {family=>[route,route,...], ...}, ...}
# puts rt.routes[Socket::AF_INET].first.dst
#
# If there are no routes for a particular family then it will
# return a (frozen) empty array.
def routes
@routes ||= (
h = {}
links.each do |link|
h[link.ifname] = Hash.new(EMPTY_ARRAY)
end
read_routes.each do |route|
(h[route.family] ||= []) << route
end
h
)
end
end
end

View File

@@ -1,166 +0,0 @@
require 'netlink/nlsocket'
require 'netlink/message'
module Netlink
# This is the medium and high-level API using a NETLINK_ROUTE protocol socket
class RTSocket < NLSocket
def initialize(opt={})
super(opt.merge(:protocol => Netlink::NETLINK_ROUTE))
clear_cache
end
# Download a list of links (interfaces). Either returns an array of
# Netlink::Link objects, or yields them to the supplied block.
#
# res = nl.link_list
# p res
# [#<Netlink::Link {:family=>0, :pad=>0, :type=>772, :index=>1,
# :flags=>65609, :change=>0, :ifname=>"lo", :txqlen=>0, :operstate=>0,
# :linkmode=>0, :mtu=>16436, :qdisc=>"noqueue", :map=>"...",
# :address=>"\x00\x00\x00\x00\x00\x00", :broadcast=>"\x00\x00\x00\x00\x00\x00",
# :stats=>#<struct Netlink::LinkStats rx_packets=22, ...>,
# :stats64=>#<struct Netlink::LinkStats rx_packets=22, ...>}>, ...]
def read_links(opt=nil, &blk)
send_request RTM_GETLINK, Link.new(opt),
NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST
receive_until_done(RTM_NEWLINK, &blk)
end
# Download a list of routes. Either returns an array of
# Netlink::Route objects, or yields them to the supplied block.
#
# A hash of kernel options may be supplied, but you might also have
# to perform your own filtering. e.g.
# rt.read_routes(:family=>Socket::AF_INET) # works
# rt.read_routes(:protocol=>Netlink::RTPROT_STATIC) # ignored
#
# res = nl.routes(:family => Socket::AF_INET)
# p res
# [#<Netlink::Route {:family=>2, :dst_len=>32, :src_len=>0, :tos=>0,
# :table=>255, :protocol=>2, :scope=>253, :type=>3, :flags=>0, :table2=>255,
# :dst=>#<IPAddr: IPv4:127.255.255.255/255.255.255.255>,
# :prefsrc=>#<IPAddr: IPv4:127.0.0.1/255.255.255.255>, :oif=>1}>, ...]
#
# Note that not all attributes will always be present. In particular,
# a defaultroute (dst_len=0) misses out the dst address completely:
#
# [#<Netlink::Route {:family=>2, :dst_len=>0, :src_len=>0, :tos=>0,
# :table=>254, :protocol=>4, :scope=>0, :type=>1, :flags=>0, :table2=>254,
# :gateway=>#<IPAddr: IPv4:10.69.255.253/255.255.255.255>, :oif=>2}>, ...]
def read_routes(opt=nil, &blk)
send_request RTM_GETROUTE, Route.new(opt),
NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST
receive_until_done(RTM_NEWROUTE, &blk)
end
# Download a list of link addresses. Either returns an array of
# Netlink::Addr objects, or yields them to the supplied block.
# You will need to use the 'index' to cross reference to the interface.
#
# A hash of kernel options may be supplied, but likely only :family
# is honoured.
#
# res = nl.addrs(:family => Socket::AF_INET)
# p res
# [#<Netlink::Addr {:family=>2, :prefixlen=>8, :flags=>128, :scope=>254,
# :index=>1, :address=>#<IPAddr: IPv4:127.0.0.1/255.255.255.255>,
# :local=>#<IPAddr: IPv4:127.0.0.1/255.255.255.255>, :label=>"lo"}>, ...]
def read_addrs(opt=nil, &blk)
send_request RTM_GETADDR, Addr.new(opt),
NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST
receive_until_done(RTM_NEWADDR, &blk)
end
# Download a list of addresses, grouped as {index=>[addr,addr], index=>[addr,addr]}
def read_addrs_by_ifindex(opt=nil)
res = read_addrs(opt).group_by { |obj| obj.index }
res.default = [].freeze
res
end
# Clear the memoization cache
def clear_cache
@links = nil
@addrs = nil
@routes = nil
end
# Return the memoized interface table, keyed by interface name. e.g.
# puts rt.links["eth0"].type
def links
@links ||= (
res = {}
read_links.each { |obj| res[obj.ifname] = obj }
res
)
end
EMPTY_ARRAY = [].freeze #:nodoc:
# Return the memoized address table, keyed by interface name and
# address family, containing an array of addresses for each
# interface/family combination. i.e.
#
# # {ifname=>{family=>[addr,addr,...], ...}, ...}
# puts rt.addrs["eth0"][Socket::AF_INET][0].address
#
# If there are no addresses for a particular family then it will
# return a (frozen) empty array, to make iteration eaiser.
def addrs
@addrs ||= (
h = {}
index_to_link = {}
links.each do |name, link|
h[link.ifname] = {}
index_to_link[link.index] = link
end
read_addrs.each do |addr|
ifname = index_to_link[addr.index].ifname
h[ifname] ||= Hash.new(EMPTY_ARRAY)
(h[ifname][addr.family] ||= []) << addr
end
h
)
end
# Return the memoized route table, keyed by output interface name and
# address family, containing an array of routes for each interface/
# family combination. i.e.
#
# # {ifname=>{family=>[route,route,...], ...}, ...}
# puts rt.routes["eth0"][Socket::AF_INET].first.dst
#
# If there are no routes for a particular family then it will
# return a (frozen) empty array, to make iteration eaiser.
def routes
@routes ||= (
h = {}
index_to_link = {}
links.each do |name, link|
h[link.ifname] = {}
index_to_link[link.index] = link
end
read_routes.each do |route|
ifname = index_to_link[route.oif].ifname
h[ifname] ||= Hash.new(EMPTY_ARRAY)
(h[ifname][route.family] ||= []) << route
end
h
)
end
end
end
if __FILE__ == $0
require 'pp'
nl = Netlink::RTSocket.new
#puts "*** routes ***"
#pp nl.read_routes(:family => Socket::AF_INET)
#puts "*** links ***"
#pp nl.read_links
#puts "*** addrs ***"
#pp nl.read_addrs(:family => Socket::AF_INET)
pp nl.links["eth0"]
pp nl.addrs["eth0"]
pp nl.routes["eth0"][Socket::AF_INET].min_by { |route| route.dst_len }
end